Exploring the population structure and genetic diversity in apple germplasm using iPBS-retrotransposon markers

被引:0
|
作者
Madenova, Aigul [1 ]
Kuan, Angsagan [2 ]
Ali, Amjad [3 ]
Nadeem, Muhammad azhar [3 ]
Altaf, Muhammad tanveer [4 ]
Kabylbekova, Balnur [5 ]
Kaldybaeva, Dinara
Turdiyev, Timur [1 ]
Baloch, Faheem Shehzad [6 ,7 ]
机构
[1] Kazakh Natl Agrarian Res Univ, Plants Micropropagat Lab, Alma Ata, Kazakhstan
[2] Al Farabi Kazakh Natl Univ, Fac Biol & Biotechnol, Alma Ata, Kazakhstan
[3] Sivas Univ Sci & Technol, Fac Agr Sci & Technol, Sivas, Turkiye
[4] Recep Tayyip Erdogan Univ, Fac Agr, Dept Field Crops, Rize, Turkiye
[5] Kazakh Fruit & Vegetable Res Inst, Alma Ata, Kazakhstan
[6] Mersin Univ, Fac Sci, Dapartment Biotechnol, Mersin, Turkiye
[7] Jeju Natl Univ, Dept Plant Resources & Environm, Jeju, South Korea
关键词
DNA markers; apple germplasm; genetic diversity; population structure; analysis of molecular variance; MOLECULAR CHARACTERIZATION; CULTIVARS; GENOME;
D O I
10.55730/1300-008X.2827
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Apple ( Malus domestica [Suckow] Borkh) holds global economic and cultural value, particularly in temperate regions. This study investigates the genetic variations among 52 apple accessions from three research centre's in Kazakhstan, employing the iPBS-retrotransposons marker system. Of the 35 markers initially screened, 12 highly polymorphic markers were selected for PCR amplification, producing 280 bands, 279 of which were polymorphic, yielding a polymorphism rate of 99.64%. Genetic diversity indices revealed notable variability with the effective number of alleles (ne = 1.655), Shannon's information index (I = 0.373), gene diversity (h = 0.549), and an average genetic distance of 1.2. Analysis of molecular variance (AMOVA) demonstrated that 97% of the genetic variation occurred within the population. STRUCTURE analysis divided the germplasm into two distinct populations and one unclassified population based on collection centers. Both the neighbor-joining tree and principal coordinate analysis (PCoA) supported these results, confirming the genetic separation into two groups. This study highlighted the significant genetic diversity among apple accessions, demonstrating the effectiveness of the iPBS-retrotransposons marker system. Additionally, the highest genetic distance (1.2) observed between the Tyulpan and Red Chief samples, positions these accessions as suitable and promising candidates for future breeding initiatives.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Diversity and association mapping assessment of an untouched native grapevine genetic resource by iPBS retrotransposon markers
    Guler, Emrah
    Karadeniz, Turan
    Ozer, Goksel
    Uysal, Tamer
    GENETIC RESOURCES AND CROP EVOLUTION, 2024, 71 (02) : 679 - 690
  • [32] Genetic diversity and population structure of Brassica oleracea germplasm in Ireland using SSR markers
    El-Esawi, Mohamed A.
    Germaine, Kieran
    Bourke, Paula
    Malone, Renee
    COMPTES RENDUS BIOLOGIES, 2016, 339 (3-4) : 133 - 140
  • [33] GENETIC DIVERSITY AND POPULATION STRUCTURE OF QUINOA (CHENOPODIUM QUINOA WILLD.) USING IPBS-RETROTRANSPOSONS MARKERS
    Hossein-Pour, A.
    Haliloglu, K.
    Ozkan, G.
    Tan, M.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2019, 17 (02): : 1899 - 1911
  • [34] Genetic diversity and population structure of Clerodendrum serratum (L.) Moon using CBDP, iPBS and SCoT markers
    Apana, Nandeibam
    Amom, Thoungamba
    Tikendra, Leimapokpam
    Potshangbam, Angamba M.
    Dey, Abhijit
    Nongdam, Potshangbam
    JOURNAL OF APPLIED RESEARCH ON MEDICINAL AND AROMATIC PLANTS, 2021, 25
  • [35] Genetic diversity of maize germplasm assessed by retrotransposon-based markers
    Kuhn, Betty Cristiane
    Lopez-Ribera, Ignacio
    Pires da Silva Machado, Maria de Fatima
    Vicient, Carlos M.
    ELECTROPHORESIS, 2014, 35 (12-13) : 1921 - 1927
  • [36] Diversity and association mapping assessment of an untouched native grapevine genetic resource by iPBS retrotransposon markers
    Emrah Güler
    Turan Karadeniz
    Göksel Özer
    Tamer Uysal
    Genetic Resources and Crop Evolution, 2024, 71 : 679 - 690
  • [37] Genetic Diversity, Structure, and Core Collection of Korean Apple Germplasm Using Simple Sequence Repeat Markers
    Kim, Jeong-Hee
    Oh, Youngjae
    Lee, Gi-An
    Kwon, Young Soon
    Kim, Seon Ae
    Kwon, Soon-Il
    Doi, Yun-Su
    Choi, Cheol
    HORTICULTURE JOURNAL, 2019, 88 (03): : 329 - 337
  • [38] Analysis of genetic diversity in pigeon pea germplasm using retrotransposon-based molecular markers
    Kailash C. Maneesha
    Journal of Genetics, 2017, 96 : 551 - 561
  • [39] Analysis of genetic diversity in pigeon pea germplasm using retrotransposon-based molecular markers
    Maneesha
    Upadhyaya, Kailash C.
    JOURNAL OF GENETICS, 2017, 96 (04) : 551 - 561
  • [40] Genetic diversity and population structure studies of the wild apple genotypes using RAPD markers
    Kumar, Chaviesh
    Singh, S. K.
    Singh, Rakesh
    Pramanick, K. K.
    Verma, M. K.
    Srivastav, Manish
    INDIAN JOURNAL OF HORTICULTURE, 2018, 75 (04) : 546 - 552