Yang-Lee zeros in quantum phase transitions: An entanglement perspective

被引:0
|
作者
Li, Hongchao [1 ]
机构
[1] Univ Tokyo, Dept Phys, 7-3-1 Hongo, Tokyo 1130033, Japan
关键词
EDGE SINGULARITY;
D O I
10.1103/PhysRevB.111.045139
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the Yang-Lee theory in quantum phase transitions from the perspective of quantum entanglement in one-dimensional many-body systems. We primarily focus on the distribution of Yang-Lee zeros and its associated Yang-Lee edge singularity of two prototypical models: the Su-Schrieffer-Heeger model and the XXZ spin chain. By taking the zero-temperature limit, we show how the Yang-Lee zeros approach the quantum phase transition points on the complex plane of parameters. To characterize the edge singularity induced by Yang-Lee zeros in a quantum phase transition, we introduce the entanglement entropy of the ground state to show that the edges of Yang-Lee zeros lead to the ground-state entanglement transition. We further show that our results are also applicable to the general noninteracting parity-time-symmetric Hamiltonians.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Embedding the Yang-Lee quantum criticality in open quantum systems
    Matsumoto, Norifumi
    Nakagawa, Masaya
    Ueda, Masahito
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [42] Scaling of the Berry Phase in the Yang-Lee Edge Singularity
    Zhai, Liang-Jun
    Wang, Huai-Yu
    Huang, Guang-Yao
    ENTROPY, 2019, 21 (09)
  • [43] Yang-Lee zeros and the helix-coil transition in a continuum model of polyalanine
    Alves, NA
    Hansmann, UHE
    PHYSICA A, 2001, 292 (1-4): : 509 - 518
  • [44] Density of Yang-Lee zeros in the thermodynamic limit from tensor network methods
    Garcia-Saez, Artur
    Wei, Tzu-Chieh
    PHYSICAL REVIEW B, 2015, 92 (12):
  • [45] Some new results on Yang-Lee zeros of the Ising model partition function
    Matveev, Victor
    Shrock, Robert
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 215 (5-6): : 271 - 279
  • [46] ON YANG-LEE DISTRIBUTION OF ROOTS
    HIISHAUG.E
    HEMMER, PC
    PHYSICA, 1963, 29 (12): : 1338 - &
  • [47] Comment on "First-order phase transitions: Equivalence between bimodalities and the Yang-Lee theorem"
    Touchette, H
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 359 (375-379) : 375 - 379
  • [48] Some new results on Yang-Lee zeros of the Ising model partition function
    Matveev, V
    Shrock, R
    PHYSICS LETTERS A, 1996, 215 (5-6) : 271 - 279
  • [49] Yang-Lee zeros of the Ising model on random graphs of non planar topology
    de Albuquerque, LC
    Alves, NA
    Dalmazi, D
    NUCLEAR PHYSICS B, 2000, 580 (03) : 739 - 756
  • [50] Experimental Observation of the Yang-Lee Quantum Criticality in Open Quantum Systems
    Gao, Huixia
    Wang, Kunkun
    Xiao, Lei
    Nakagawa, Masaya
    Matsumoto, Norifumi
    Qu, Dengke
    Lin, Haiqing
    Ueda, Masahito
    Xue, Peng
    PHYSICAL REVIEW LETTERS, 2024, 132 (17)