Dual Motion Attention and Enhanced Knowledge Distillation for Video Frame Interpolation

被引:0
|
作者
Zhang, Dengyong [1 ]
Lou, Runqi [1 ]
Chen, Jiaxin [1 ]
Liao, Xin [2 ]
Yang, Gaobo [2 ]
Ding, Xiangling [3 ]
机构
[1] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Peoples R China
[2] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Peoples R China
[3] Hunan Univ Sci & Technol, Sch Comp & Commun Engn, Xiangtan 411201, Hunan, Peoples R China
关键词
D O I
10.1109/APSIPAASC63619.2025.10848798
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video frame interpolation presents a formidable challenge in the domain of video generation, primarily due to the intricate motion dynamics exhibited by objects within video frames. With the advancements in deep learning, numerous flow-based methods for video frame interpolation have emerged. These methods aim to predict intermediate frames by leveraging the estimation of motion information between frames. In this paper, we propose a novel framework for modeling input video frames, which employs a coarse-to-fine structure to extract motion information between frames. Additionally, it incorporates a Bidirectional Correlation Volume and a complementary module of contextual features, specifically designed to pay attention to the symmetry of the optical flow and shallow motion features. We incorporate this dual attention to the knowledge distillation part of the model, which further improves the performance of the model. Leveraging this framework, our model demonstrates the ability to accurately predict motion information between frames, consequently producing visually appealing intermediate frames.The code is available at https://github.com/famt0531/DAEK.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] ATCA: AN ARC TRAJECTORY BASED MODEL WITH CURVATURE ATTENTION FOR VIDEO FRAME INTERPOLATION
    Liu, Jinfeng
    Kong, Lingtong
    Yang, Jie
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1486 - 1490
  • [32] Multi-Scale Attention Generative Adversarial Networks for Video Frame Interpolation
    Xiao, Jian
    Bi, Xiaojun
    IEEE ACCESS, 2020, 8 : 94842 - 94851
  • [33] E-VFIA : Event-Based Video Frame Interpolation with Attention
    Kilic, Onur Selim
    Akman, Ahmet
    Alatan, A. Aydin
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 8284 - 8290
  • [34] PhaseNet for Video Frame Interpolation
    Meyer, Simone
    Djelouah, Abdelaziz
    McWilliams, Brian
    Sorkine-Hornung, Alexander
    Gross, Markus
    Schroers, Christopher
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 498 - 507
  • [35] Blurry Video Frame Interpolation
    Shen, Wang
    Bao, Wenbo
    Zhai, Guangtao
    Chen, Li
    Min, Xiongkuo
    Gao, Zhiyong
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 5113 - 5122
  • [36] Video Frame Interpolation Transformer
    Shi, Zhihao
    Xu, Xiangyu
    Liu, Xiaohong
    Chen, Jun
    Yang, Ming-Hsuan
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 17461 - 17470
  • [37] Video Frame Interpolation with Transformer
    Lu, Liying
    Wu, Ruizheng
    Lin, Huaijia
    Lu, Jiangbo
    Jia, Jiaya
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 3522 - 3532
  • [38] Multiple Video Frame Interpolation via Enhanced Deformable Separable Convolution
    Cheng, Xianhang
    Chen, Zhenzhong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (10) : 7029 - 7045
  • [39] IAM-VFI : Interpolate Any Motion for Video Frame Interpolation with Motion Complexity Map
    Yoon, Kihwan
    Kim, Yong Han
    Kim, Sungjei
    Jeong, Jinwoo
    COMPUTER VISION - ECCV 2024, PT XV, 2025, 15073 : 461 - 477
  • [40] Enhanced motion compensated frame interpolation using object layer inference
    Wang, T. -S.
    Choi, K. -S.
    Jang, H. -S.
    Ko, S. -J.
    ELECTRONICS LETTERS, 2011, 47 (01) : 26 - 27