Evidence Estimation in Gaussian Graphical Models Using a Telescoping Block Decomposition of the Precision Matrix

被引:0
|
作者
Bhadra, Anindya [1 ]
Sagar, Ksheera [1 ]
Rowe, David [1 ]
Banerjee, Sayantan [2 ]
Datta, Jyotishka [3 ]
机构
[1] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
[2] Indian Inst Management Indore, Operat Management & Quantitat Tech Area, Indore 453556, MP, India
[3] Virginia Polytech Inst & State Univ, Dept Stat, Blacksburg, VA 24060 USA
基金
美国国家科学基金会;
关键词
Bayes factor; Chib's method; Graphical models; Marginal likelihood; MARGINAL LIKELIHOOD; NORMALIZING CONSTANTS; BAYESIAN-INFERENCE; SELECTION; SAMPLER; LAWS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Marginal likelihood, also known as model evidence, is a fundamental quantity in Bayesian statistics. It is used for model selection using Bayes factors or for empirical Bayes tuning of prior hyper-parameters. Yet, the calculation of evidence has remained a longstanding open problem in Gaussian graphical models. Currently, the only feasible solutions that exist are for special cases such as the Wishart or G-Wishart, in moderate dimensions. We develop an approach based on a novel telescoping block decomposition of the precision matrix that allows the estimation of evidence by application of Chib's technique under a very broad class of priors under mild requirements. Specifically, the requirements are: (a) the priors on the diagonal terms on the precision matrix can be written as gamma or scale mixtures of gamma random variables and (b) those on the off-diagonal terms can be represented as normal or scale mixtures of normal. This includes structured priors such as the Wishart or G-Wishart, and more recently introduced element-wise priors, such as the Bayesian graphical lasso and the graphical horseshoe. Among these, the true marginal is known in an analytically closed form for Wishart, providing a useful validation of our approach. For the general setting of the other three, and several more priors satisfying conditions (a) and (b) above, the calculation of evidence has remained an open question that this article resolves under a unifying framework.
引用
收藏
页数:43
相关论文
共 50 条
  • [31] Approximate Bayesian estimation in large coloured graphical Gaussian models
    Li, Qiong
    Gao, Xin
    Massam, Helene
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2018, 46 (01): : 176 - 203
  • [32] On Joint Estimation of Gaussian Graphical Models for Spatial and Temporal Data
    Lin, Zhixiang
    Wang, Tao
    Yang, Can
    Zhao, Hongyu
    BIOMETRICS, 2017, 73 (03) : 769 - 779
  • [33] Consistent multiple changepoint estimation with fused Gaussian graphical models
    Gibberd, A.
    Roy, S.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2021, 73 (02) : 283 - 309
  • [34] Quasi-Bayesian estimation of large Gaussian graphical models
    Atchade, Yves F.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 173 : 656 - 671
  • [35] Estimation of Sparse Gaussian Graphical Models with Hidden Clustering Structure
    Lin, Meixia
    Sun, Defeng
    Toh, Kim-Chuan
    Wang, Chengjing
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 36
  • [36] Bayesian Uncertainty Estimation for Gaussian Graphical Models and Centrality Indices
    Jongerling, J.
    Epskamp, S.
    Williams, D. R.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2023, 58 (02) : 311 - 339
  • [37] Jewel: A Novel Method for Joint Estimation of Gaussian Graphical Models
    Angelini, Claudia
    De Canditiis, Daniela
    Plaksienko, Anna
    MATHEMATICS, 2021, 9 (17)
  • [38] Consistent multiple changepoint estimation with fused Gaussian graphical models
    A. Gibberd
    S. Roy
    Annals of the Institute of Statistical Mathematics, 2021, 73 : 283 - 309
  • [39] Marginal Likelihoods for Distributed Parameter Estimation of Gaussian Graphical Models
    Meng, Zhaoshi
    Wei, Dennis
    Wiesel, Ami
    Hero, Alfred O., III
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (20) : 5425 - 5438
  • [40] On the theoretical guarantees for parameter estimation of Gaussian random field models: A sparse precision matrix approach
    Tajbakhsh, Sam Davanloo
    Aybat, Necdet Serhat
    Castillo, Enrique Del
    Journal of Machine Learning Research, 2020, 21