The toroidal curvatures of interplanetary coronal mass ejection flux ropes from multi-point observations

被引:1
|
作者
Lai, H. R. [1 ]
Jia, Y. -d. [2 ]
Jian, L. K. [3 ]
Russell, C. T. [2 ]
Blanco-Cano, X. [4 ]
Luhmann, J. G. [5 ]
Chen, C. Z. [6 ]
Cui, J. [1 ]
机构
[1] Sun Yat sen Univ, Sch Atmospher Sci, Planetary Environm & Astrobiol Res Lab PEARL, Zhuhai, Peoples R China
[2] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA
[3] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA
[4] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City, Mexico
[5] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA USA
[6] Lab Pinghu, Pinghu, Peoples R China
基金
中国国家自然科学基金;
关键词
solar wind; interplanetary coronal mass ejection; flux rope; magnetic field; data analysis; MAGNETIC CLOUDS; SOLAR-WIND; SHOCK; RECONSTRUCTION; SIGNATURES; TURBULENCE; GEOMETRY; PLASMA; MODEL;
D O I
10.3389/fspas.2024.1478020
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Interplanetary coronal mass ejections (ICMEs), characterized by their magnetic flux ropes, could potentially trigger geomagnetic disturbances. They have been attracting extensive investigations for decades. Despite numerous ICME models proposed in the past, few account for the curvature of the flux rope axis. In this study, we use conjunction observations from ACE, STEREO A and B, Juno and Solar Orbiter to analyze the evolution of the rope orientation of ICME flux ropes. Our findings indicate that the orientation of these ropes changes independently of the scale of the ropes or the distance they travel between spacecrafts. Furthermore, we estimate and compare the major radii of these flux ropes, uncovering a diverse range of distributions that do not seem to depend on the flux rope's width. These results provide fresh insights and constraints for global ICME models, thereby contributing to the advancement of space weather research.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Flux rope modeling of an interplanetary coronal mass ejection observed at WIND and NEAR
    Mulligan, T
    Russell, CT
    Anderson, BJ
    Lohr, DA
    Toth, BA
    Zanetti, LJ
    Acuna, MH
    Lepping, RP
    Gosling, JT
    Luhmann, JG
    SOLAR WIND NINE, 1999, 471 : 689 - 692
  • [22] Observations of the Venus Dramatic Response to an Extremely Strong Interplanetary Coronal Mass Ejection
    Xu, Qi
    Xu, Xiaojun
    Chang, Qing
    Rong, Zhaojin
    Wang, Jing
    Xu, Jiaying
    Zhang, Tielong
    ASTROPHYSICAL JOURNAL, 2019, 876 (01):
  • [23] Multi-spacecraft observations of the structure of the sheath of an interplanetary coronal mass ejection and related energetic ion enhancement
    Kilpua, E. K. J.
    Good, S. W.
    Dresing, N.
    Vainio, R.
    Davies, E. E.
    Forsyth, R. J.
    Gieseler, J.
    Lavraud, B.
    Asvestari, E.
    Morosan, D. E.
    Pomoell, J.
    Price, D. J.
    Heyner, D.
    Horbury, T. S.
    Angelini, V
    O'Brien, H.
    Evans, V
    Rodriguez-Pacheco, J.
    Herrero, R. Gomez
    Ho, G. C.
    Wimmer-Schweingruber, R.
    ASTRONOMY & ASTROPHYSICS, 2021, 656
  • [24] Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE
    Moestl, C.
    Amerstorfer, T.
    Palmerio, E.
    Isavnin, A.
    Farrugia, C. J.
    Lowder, C.
    Winslow, R. M.
    Donnerer, J. M.
    Kilpua, E. K. J.
    Boakes, P. D.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2018, 16 (03): : 216 - 229
  • [25] The role of coronal mass ejections and interplanetary shocks in interplanetary magnetic field statistics and solar magnetic flux ejection
    Smith, CW
    Phillips, JL
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1997, 102 (A1) : 249 - 261
  • [26] Relationships between coronal mass ejection speeds from coronagraph images and interplanetary characteristics of associated interplanetary coronal mass ejections
    Lindsay, GM
    Luhmann, JG
    Russell, CT
    Gosing, JT
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1999, 104 (A6) : 12515 - 12523
  • [27] Identifying footpoints of pre-eruptive and coronal mass ejection flux ropes with sunspot scars
    Xing, Chen
    Aulanier, Guillaume
    Schmieder, Brigitte
    Cheng, Xin
    Ding, Mingde
    ASTRONOMY & ASTROPHYSICS, 2024, 682
  • [28] The Structural Connection between Coronal Mass Ejection Flux Ropes near the Sun and at 1 au
    Xie, H.
    Gopalswamy, N.
    Akiyama, S.
    ASTROPHYSICAL JOURNAL, 2021, 922 (01):
  • [29] Observations of interplanetary scintillation of the 2005 May 13 coronal mass ejection: numerical models
    Chang, O.
    Gonzalez, R. F.
    Bisi, M. M.
    Fallows, R. A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 508 (01) : 1314 - 1320
  • [30] Responses of the Martian Magnetosphere to an Interplanetary Coronal Mass Ejection: MAVEN Observations and LatHyS Results
    Romanelli, N.
    Modolo, R.
    Leblanc, F.
    Chaufray, J. -Y.
    Martinez, A.
    Ma, Y.
    Lee, C. O.
    Luhmann, J. G.
    Halekas, J.
    Brain, D.
    DiBraccio, G.
    Espley, J.
    Mcfadden, J.
    Jakosky, B.
    Holmstrom, M.
    GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (16) : 7891 - 7900