Test-retest repeatability of deep learning-based attenuation correction for chest FDG PET/MRI using Zero-TE MRI and unpaired PET/CT data

被引:0
|
作者
Nogami, Munenobu [1 ,2 ]
Matsuo, Hidetoshi [3 ]
Nishio, Mizuho [3 ]
Zeng, Feibi [1 ]
Tachibana, Miho [3 ]
Inukai, Junko [3 ]
Kurimoto, Takako [4 ]
Kubo, Kazuhiro
Okazawa, Hidehiko [2 ]
Murakami, Takamichi [3 ]
机构
[1] Kobe Univ Hosp, Kobe, Hyogo, Japan
[2] Univ Fukui, Fukui, Japan
[3] Kobe Univ, Grad Sch Med, Kobe, Hyogo, Japan
[4] GE Healthcare, Hino, Tokyo, Japan
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
241312
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Deep learning for Dixon MRI-based attenuation correction in PET/MRI of head and neck cancer patients
    Anders B. Olin
    Adam E. Hansen
    Jacob H. Rasmussen
    Björn Jakoby
    Anne K. Berthelsen
    Claes N. Ladefoged
    Andreas Kjær
    Barbara M. Fischer
    Flemming L. Andersen
    EJNMMI Physics, 9
  • [22] Impact of CT-Based and MRI-Based Attenuation Correction Methods on 18 F-FDG PET Quantification Using PET Phantoms
    Wu, Cheng-Han
    Tu, Chun-Yuan
    Shen, Li-Chen
    Lu, Yueh-Hsun
    Yang, Bang-Hung
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2022, 42 (03) : 374 - 381
  • [23] Impact of CT-Based and MRI-Based Attenuation Correction Methods on 18 F-FDG PET Quantification Using PET Phantoms
    Cheng-Han Wu
    Chun-Yuan Tu
    Li-Chen Shen
    Yueh-Hsun Lu
    Bang-Hung Yang
    Journal of Medical and Biological Engineering, 2022, 42 : 374 - 381
  • [24] Truncation compensation and metallic dental implant artefact reduction in PET/MRI attenuation correction using deep learning-based object completion
    Arabi, Hossein
    Zaidi, Habib
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (19):
  • [25] MRI-guided attenuation correction in torso PET/MRI: Assessment of segmentation-, atlas-, and deep learning-based approaches in the presence of outliers
    Arabi, Hossein
    Zaidi, Habib
    MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (02) : 686 - 701
  • [26] Using domain knowledge for robust and generalizable deep learning-based CT-free PET attenuation and scatter correction
    Rui Guo
    Song Xue
    Jiaxi Hu
    Hasan Sari
    Clemens Mingels
    Konstantinos Zeimpekis
    George Prenosil
    Yue Wang
    Yu Zhang
    Marco Viscione
    Raphael Sznitman
    Axel Rominger
    Biao Li
    Kuangyu Shi
    Nature Communications, 13
  • [27] Using domain knowledge for robust and generalizable deep learning-based CT-free PET attenuation and scatter correction
    Guo, Rui
    Xue, Song
    Hu, Jiaxi
    Sari, Hasan
    Mingels, Clemens
    Zeimpekis, Konstantinos
    Prenosil, George
    Wang, Yue
    Zhang, Yu
    Viscione, Marco
    Sznitman, Raphael
    Rominger, Axel
    Li, Biao
    Shi, Kuangyu
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [28] Deep learning-guided attenuation and scatter correction without using anatomical images in brain PET/MRI
    Bortolin, Karin
    Arabi, Hossein
    Zaidi, Habib
    2019 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2019,
  • [29] Deep Learning Based Attenuation Correction of PET/MRI in Pediatric Brain Tumor Patients: Evaluation in a Clinical Setting
    Ladefoged, Claes Nohr
    Marner, Lisbeth
    Hindsholm, Amalie
    Law, Ian
    Hojgaard, Liselotte
    Andersen, Flemming Littrup
    FRONTIERS IN NEUROSCIENCE, 2019, 12
  • [30] Test-retest repeatability and interobserver variation of healthy tissue metabolism using 18F-FDG PET/CT of the thorax among lung cancer patients
    Malaih, Afnan A.
    Dunn, Joel T.
    Nygard, Lotte
    Kovacs, David G.
    Andersen, Flemming L.
    Barrington, Sally F.
    Fischer, Barbara M.
    NUCLEAR MEDICINE COMMUNICATIONS, 2022, 43 (05) : 549 - 559