The Least Action Admissibility Principle

被引:0
|
作者
Gimperlein, H. [1 ]
Grinfeld, M. [2 ]
Knops, R. J. [3 ,4 ]
Slemrod, M. [5 ]
机构
[1] Univ Innsbruck, Engn Math, Innsbruck, Austria
[2] Univ Strathclyde, Dept Math & Stat, Glasgow City G1 1XH, Scotland
[3] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Scotland
[4] Heriot Watt Univ, Sch Math & Comp Sci, Edinburgh EH14 4AS, Scotland
[5] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
英国工程与自然科学研究理事会;
关键词
MAXIMAL DISSIPATION; EULER EQUATIONS; WEAK SOLUTIONS; MOTION; FLUID;
D O I
10.1007/s00205-025-02094-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides a new admissibility criterion for choosing physically relevant weak solutions of the equations of Lagrangian and continuum mechanics when non-uniqueness of solutions to the initial value problem occurs. The criterion is motivated by the classical least action principle but is now applied to initial value problems which exhibit non-unique solutions. Examples are provided for Lagrangian mechanics and the Euler equations of barotropic fluid mechanics. In particular, we show that the least action admissibility principle prefers the classical two shock solution to the Riemann initial value problem to certain solutions generated by convex integration. On the other hand, Dafermos's entropy criterion prefers convex integration solutions to the two shock solutions. Furthermore, when the pressure is given by p(rho)=rho 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\rho )=\rho <^>2$$\end{document}, we show that the two shock solution is always preferred whenever the convex integration solutions are defined for the same initial data.
引用
收藏
页数:17
相关论文
共 50 条