Retrieving Aerosol Optical Depth over Land from Landsat-8 Satellite Images with the Aid of Cloud Shadows

被引:0
|
作者
Zhu, Jingmiao [1 ,2 ]
Qiao, Congcong [1 ,3 ]
Duan, Minzheng [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Atmospher & Phys, Beijing 100029, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[3] Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
aerosol; optical depth; cloud shadow; DISCRETE-ORDINATE-METHOD; TROPOSPHERIC AEROSOL; ALGORITHM; MISSION; SCATTERING; POLLUTION; NETWORK; AERONET; IMPACT; POLARIZATION;
D O I
10.3390/rs17020176
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Clouds and their shadows can be clearly identified from high-spatial-resolution satellite images, such as those provided by Landsat-8/9 with a spatial resolution of approximately 30 m and Sentinel-2 with a spatial resolution of around 20 m. Consequently, the difference between satellite measurements over cloud-shadowed and nearby illuminated pixels can be used to derive the aerosol optical depth (AOD), even in the absence of detailed surface optical properties. Based on this assumption, an algorithm for AOD retrieval over land is developed and tested using Landsat-8/9 images containing scattered clouds over Xuzhou, China, and Dalanzadgad, Mongolia. The retrieved AODs are compared against MODIS and ground-based sun photometer measurements. The findings reveal that, in cloudy regions, over 90% of the discrepancies between the AODs retrieved using the cloud-shadow method and ground-based measurements fall within 0.05 +/- 0.20 AOD. This cloud-shadow algorithm represents a valuable complement to existing satellite aerosol retrieval methods, particularly in sparsely cloud-covered areas.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Aerosol Optical Depth variability over the Arabian Peninsula as inferred from satellite measurements
    Kumar, K. Ravi
    Attada, Raju
    Dasari, Hari Prasad
    Vellore, Ramesh K.
    Langodan, Sabique
    Abualnaja, Yasser O.
    Hoteit, Ibrahim
    ATMOSPHERIC ENVIRONMENT, 2018, 187 : 346 - 357
  • [32] Recovering Land Surface Temperature Under Cloudy Skies Considering the Solar-Cloud-Satellite Geometry: Application to MODIS and Landsat-8 Data
    Wang, Tianxing
    Shi, Jiancheng
    Ma, Ya
    Husi, Letu
    Comyn-Platt, Edward
    Ji, Dabin
    Zhao, Tianjie
    Xiong, Chuan
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (06) : 3401 - 3416
  • [33] Inversion of aerosol optical depth over land from directional polarimetric camera onboard chinese Gaofen-5 satellite
    Huang Hong-Lian
    Ti Ru-Fang
    Zhang Dong-Ying
    Fang Wei
    Sun Xiao-Bin
    Yi Wei-Ning
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2020, 39 (04) : 454 - 461
  • [34] Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Comparison of Two Composition Methods
    Nasiri, Vahid
    Deljouei, Azade
    Moradi, Fardin
    Sadeghi, Seyed Mohammad Moein
    Borz, Stelian Alexandru
    REMOTE SENSING, 2022, 14 (09)
  • [35] Improved estimation of aerosol optical depth from MODIS imagery over land surfaces
    Liang, Shunlin
    Zhong, Bo
    Fang, Hongliang
    REMOTE SENSING OF ENVIRONMENT, 2006, 104 (04) : 416 - 425
  • [36] GLOBAL ATMOSPHERIC AEROSOL OPTICAL DEPTH RETRIEVALS OVER LAND AND OCEAN FROM AATSR
    Bevan, Suzanne L.
    North, Peter R. J.
    Los, S. O.
    Grey, W. M. F.
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 3906 - +
  • [37] Inversion of Aerosol Optical Depth over Land Surface from Airborne Polarimetric Measurements
    Wang Han
    Yang Lei-ku
    Du Wei-bing
    Liu Pei
    Sun Xiao-bing
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38 (04) : 1019 - 1024
  • [38] A Practical Split-Window Algorithm for Retrieving Land Surface Temperature from Landsat-8 Data and a Case Study of an Urban Area in China
    Jin, Meijun
    Li, Junming
    Wang, Caili
    Shang, Ruilan
    REMOTE SENSING, 2015, 7 (04) : 4371 - 4390
  • [39] Reconstructing NDVI and land surface temperature for cloud cover pixels of Landsat-8 images for assessing vegetation health index in the Northeast region of Thailand
    Mohanasundaram, S.
    Baghel, Triambak
    Thakur, Vishal
    Udmale, Parmeshwar
    Shrestha, Sangam
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (01)
  • [40] Reconstructing NDVI and land surface temperature for cloud cover pixels of Landsat-8 images for assessing vegetation health index in the Northeast region of Thailand
    S. Mohanasundaram
    Triambak Baghel
    Vishal Thakur
    Parmeshwar Udmale
    Sangam Shrestha
    Environmental Monitoring and Assessment, 2023, 195