Monocular Depth Estimation on Adverse Weathers With Curriculum Domain Distribution Alignment

被引:0
|
作者
Zhang, Jiehua [1 ]
Li, Liang [2 ]
Yan, Chenggang [3 ]
Ke, Wei [1 ]
Gong, Yihong [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Software Engn, Xian 710000, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
[3] Hangzhou Dianzi Univ, Sch Commun Engn, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Meteorology; Estimation; Circuits and systems; Training; Adaptation models; Data models; Bridge circuits; Monocular depth estimation; domain adaptation; curriculum learning; adverse weathers;
D O I
10.1109/TCSVT.2024.3456097
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Despite the remarkable success of monocular depth estimation, most works focus on ideal experiment conditions, such as favorable weather, where there is few environmental factors impacting the depth estimation system. In practical, when suffering from adverse weather conditions, such as fog and rain, the model trained on favorable weather degrades sharply as the domain shift, caused by the decreasing of visibility. To solve this problem, in this paper, we propose a Curriculum Domain Distribution Alignment (CDA) algorithm to learn the domain-invariant representation, progressively aligning data distributions across favorable weather and adverse weather in the feature space. Concretely, to construct a domain adaptation curriculum, we first separate the target domain into several subsets with increased domain discrepancy based on an optical model. Then, we bridge the distribution discrepancy between domains from easier to harder data by matching the source and target representation subspace. Furthermore, to control the distribution aligning pace, we introduce self-paced learning to learn a dynamic domain adaptation weight, promoting the generalization ability of monocular depth estimation networks against environmental factors. We conduct experiments with six monocular depth estimation frameworks on FoggyCityScapes, RainCityScapes, SnowCityscapes, and All-day Cityscapes, improving RMSE with 8.5 %, 30.5 %, 30.9 %, 20.9 %. The extraordinary performance demonstrates the effectiveness and generalizability of our method under adverse weather conditions.
引用
收藏
页码:178 / 194
页数:17
相关论文
共 50 条
  • [31] Monocular Depth Estimation: A Thorough Review
    Arampatzakis, Vasileios
    Pavlidis, George
    Mitianoudis, Nikolaos
    Papamarkos, Nikos
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (04) : 2396 - 2414
  • [32] Fast Monocular Depth Estimation on an FPGA
    Sada, Youki
    Soga, Naoto
    Shimoda, Masayuki
    Jinguji, Akira
    Sato, Shimpei
    Nakahara, Hiroki
    2020 IEEE 34TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW 2020), 2020, : 143 - 146
  • [33] Towards Explainability in Monocular Depth Estimation
    Arampatzakis, Vasileios
    Pavlidis, George
    Pantoglou, Kyriakos
    Mitianoudis, Nikolaos
    Papamarkos, Nikos
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT II, 2025, 2134 : 412 - 419
  • [34] Unsupervised Monocular Depth Estimation for Monocular Visual SLAM Systems
    Liu, Feng
    Huang, Ming
    Ge, Hongyu
    Tao, Dan
    Gao, Ruipeng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 13
  • [35] Monocular Human Depth Estimation Via Pose Estimation
    Jun, Jinyoung
    Lee, Jae-Han
    Lee, Chul
    Kim, Chang-Su
    IEEE ACCESS, 2021, 9 : 151444 - 151457
  • [36] MONOCULAR SEGMENT-WISE DEPTH: MONOCULAR DEPTH ESTIMATION BASED ON A SEMANTIC SEGMENTATION PRIOR
    Atapour-Abarghouei, Amir
    Breckon, Toby P.
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 4295 - 4299
  • [37] The Constraints between Edge Depth and Uncertainty for Monocular Depth Estimation
    Wu, Shouying
    Li, Wei
    Liang, Binbin
    Huang, Guoxin
    ELECTRONICS, 2021, 10 (24)
  • [38] DTTNet: Depth Transverse Transformer Network for Monocular Depth Estimation
    Kamath, Shreyas K. M.
    Rajeev, Srijith
    Panetta, Karen
    Agaian, Sos S.
    MULTIMODAL IMAGE EXPLOITATION AND LEARNING 2022, 2022, 12100
  • [39] Depth-Relative Self Attention for Monocular Depth Estimation
    Shim, Kyuhong
    Kim, Jiyoung
    Lee, Gusang
    Shim, Byonghyo
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 1396 - 1404
  • [40] Self-Supervised Monocular Depth Estimation in the Dark: Towards Data Distribution Compensation
    Yang, Haolin
    Zhao, Chaoqiang
    Sheng, Lu
    Tang, Yang
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 1561 - 1569