Power analysis for zero-inflated Poisson and negative binomial generalized linear models using Monte Carlo simulation

被引:0
|
作者
Dennis, Trent [1 ]
Rubin-McGregor, Jordan [2 ]
O'Connell, Michael J. [1 ]
机构
[1] Miami Univ, Dept Stat, 105 Tallawanda Rd, Oxford, OH 45056 USA
[2] Miami Univ, Dept Psychol, Oxford, OH USA
关键词
Power analysis; zero-inflated count models; generalized linear models; simulation; REGRESSION-MODELS; ALCOHOL-USE; COUNT DATA; DISCRIMINATION; RELIABILITY; DISORDER;
D O I
10.1080/00949655.2024.2440796
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Many research fields involve count data with zero inflation. A commonly chosen model for analysing a relationship between predictors and a response variable in these scenarios is a zero-inflated generalized linear model (GLM). This model is a mixture of a count-based GLM and a zero-inflation component, with a mixing proportion that determines the amount of excess zeroes. As the use of zero-inflated count models is rising, it is important to be able to conduct a power analysis to properly design studies with such models. In this paper, we propose a flexible method for power analysis with zero-inflated count models using Monte Carlo simulation. We have created the R package ZIPowerAnalysis, which can be used to easily conduct a power analysis for any designed study that will incorporate a zero-inflated count GLM.
引用
收藏
页码:868 / 885
页数:18
相关论文
共 50 条
  • [41] Simulation on the Zero Inflated Negative Binomial (ZINB) to Model Overdispersed, Poisson Distributed Data
    Fitriani, Rahma
    Chrisdiana, Lidia Novita
    Efendi, Achmad
    9TH ANNUAL BASIC SCIENCE INTERNATIONAL CONFERENCE 2019 (BASIC 2019), 2019, 546
  • [42] Assessing influence of online reputation on sales using a zero-inflated negative binomial model
    Xu, Min
    Ye, Qiang
    Wang, Xiaolin
    Wang, Mohan
    5TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT, ITQM 2017, 2017, 122 : 1108 - 1113
  • [43] Evaluation of Shipping Accident Casualties using Zero-inflated Negative Binomial Regression Technique
    Weng, Jinxian
    Ge, Ying En
    Han, Hao
    JOURNAL OF NAVIGATION, 2016, 69 (02): : 433 - 448
  • [44] Statistical analysis of variability in TnSeq data across conditions using zero-inflated negative binomial regression
    Siddharth Subramaniyam
    Michael A. DeJesus
    Anisha Zaveri
    Clare M. Smith
    Richard E. Baker
    Sabine Ehrt
    Dirk Schnappinger
    Christopher M. Sassetti
    Thomas R. Ioerger
    BMC Bioinformatics, 20
  • [45] Assessing recurrence of depression using a zero-inflated negative binomial model: A secondary analysis of lifelog data
    Kumagai, Narimasa
    Tajika, Aran
    Hasegawa, Akio
    Kawanishi, Nao
    Fujita, Hirokazu
    Tsujino, Naohisa
    Jinnin, Ran
    Uchida, Megumi
    Okamoto, Yasumasa
    Akechi, Tatsuo
    Furukawa, Toshi A.
    PSYCHIATRY RESEARCH, 2021, 300
  • [46] Statistical analysis of variability in TnSeq data across conditions using zero-inflated negative binomial regression
    Subramaniyam, Siddharth
    DeJesus, Michael A.
    Zaveri, Anisha
    Smith, Clare M.
    Baker, Richard E.
    Ehrt, Sabine
    Schnappinger, Dirk
    Sassetti, Christopher M.
    Ioerger, Thomas R.
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [47] Exponentially weighted moving average chart using zero-inflated negative binomial distribution
    Abbas, Ali
    Ali, Sajid
    Shah, Ismail
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (15) : 3375 - 3390
  • [48] MZINBVA: variational approximation for multilevel zero-inflated negative-binomial models for association analysis in microbiome surveys
    Liu, Tiantian
    Xu, Peirong
    Du, Yueyao
    Lu, Hui
    Zhao, Hongyu
    Wang, Tao
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [49] A Bayesian zero-inflated negative binomial regression model for the integrative analysis of microbiome data
    Jiang, Shuang
    Xiao, Guanghua
    Koh, Andrew Y.
    Kim, Jiwoong
    Li, Qiwei
    Zhan, Xiaowei
    BIOSTATISTICS, 2021, 22 (03) : 522 - 540
  • [50] A TRANSITION MODEL FOR ANALYSIS OF ZERO-INFLATED LONGITUDINAL COUNT DATA USING GENERALIZED POISSON REGRESSION MODEL
    Baghfalaki, Taban
    Ganjali, Mojtaba
    REVSTAT-STATISTICAL JOURNAL, 2020, 18 (01) : 27 - 45