Infinite flags and Schubert polynomials

被引:0
|
作者
Anderson, David [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
CHERN CLASS FORMULAS;
D O I
10.1017/fms.2024.99
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Schubert polynomials using geometry of infinite-dimensional flag varieties and degeneracy loci. Applications include Graham-positivity of coefficients appearing in equivariant coproduct formulas and expansions of back-stable and enriched Schubert polynomials. We also construct an embedding of the type C flag variety and study the corresponding pullback map on (equivariant) cohomology rings.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] On the expansion of Schur and Schubert polynomials into standard elementary polynomials
    Winkel, R
    ADVANCES IN MATHEMATICS, 1998, 136 (02) : 224 - 250
  • [32] Flags of sheaves, quivers and symmetric polynomials
    Bonelli, Giulio
    Fasola, Nadir
    Tanzini, Alessandro
    FORUM OF MATHEMATICS SIGMA, 2024, 12
  • [33] A Congruence Modulo Four for Real Schubert Calculus with Isotropic Flags
    Hein, Nickolas
    Sottile, Frank
    Zelenko, Igor
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (02): : 309 - 318
  • [34] Schubert problems with respect to osculating flags of stable rational curves
    Speyer, David E.
    ALGEBRAIC GEOMETRY, 2014, 1 (01): : 14 - 45
  • [35] Double Schubert polynomials for the classical groups
    Ikeda, Takeshi
    Mihalcea, Leonardo C.
    Naruse, Hiroshi
    ADVANCES IN MATHEMATICS, 2011, 226 (01) : 840 - 886
  • [36] Diagram rules for the generation of Schubert polynomials
    Winkel, R
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1999, 86 (01) : 14 - 48
  • [37] Notes on Schubert, Grothendieck and Key Polynomials
    Kirillov, Anatol N.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
  • [38] Mitosis recursion for coefficients of Schubert polynomials
    Miller, E
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2003, 103 (02) : 223 - 235
  • [39] Schubert polynomials and classes of Hessenberg varieties
    Anderson, Dave
    Tymoczko, Julianna
    JOURNAL OF ALGEBRA, 2010, 323 (10) : 2605 - 2623
  • [40] Schubert polynomials of types A--D
    Rudolf Winkel
    manuscripta mathematica, 1999, 100 : 55 - 79