Any-dimensional equivariant neural networks

被引:0
|
作者
Levin, Eitan [1 ]
Diaz, Mateo [2 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Johns Hopkins Univ, Baltimore, MD 21218 USA
关键词
STABILITY; REPRESENTATIONS; MODULES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional supervised learning aims to learn an unknown mapping by fitting a function to a set of input-output pairs with a fixed dimension. The fitted function is then defined on inputs of the same dimension. However, in many settings, the unknown mapping takes inputs in any dimension; examples include graph parameters defined on graphs of any size and physics quantities defined on an arbitrary number of particles. We leverage a newly-discovered phenomenon in algebraic topology, called representation stability, to define equivariant neural networks that can be trained with data in a fixed dimension and then extended to accept inputs in any dimension. Our approach is black-box and user-friendly, requiring only the network architecture and the groups for equivariance, and can be combined with any training procedure. We provide a simple open-source implementation of our methods and offer preliminary numerical experiments.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Normalization-Equivariant Neural Networks with Application to Image Denoising
    Herbreteau, Sebastien
    Moebel, Emmanuel
    Kervrann, Charles
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [42] Rotation Equivariant Convolutional Neural Networks for Hyperspectral Image Classification
    Paoletti, Mercedes E.
    Haut, Juan M.
    Roy, Swalpa Kumar
    Hendrix, Eligius M. T.
    IEEE ACCESS, 2020, 8 : 179575 - 179591
  • [43] Rotation equivariant and invariant neural networks for microscopy image analysis
    Chidester, Benjamin
    Zhou, Tianming
    Do, Minh N.
    Ma, Jian
    BIOINFORMATICS, 2019, 35 (14) : I530 - I537
  • [44] Equivariant Neural Networks for Controlling Dynamic Spatial Light Modulators
    Shankar, Sumukh Vasisht
    Wang, Rui
    D'Souza, Darrel
    Singer, Jonathan P.
    Walters, Robin
    INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2024, 13 (04) : 857 - 865
  • [45] Theoretical guarantees for permutation-equivariant quantum neural networks
    Louis Schatzki
    Martín Larocca
    Quynh T. Nguyen
    Frédéric Sauvage
    M. Cerezo
    npj Quantum Information, 10
  • [46] Multi-directional Geodesic Neural Networks via Equivariant Convolution
    Poulenard, Adrien
    Ovsjanikov, Maks
    SIGGRAPH ASIA'18: SIGGRAPH ASIA 2018 TECHNICAL PAPERS, 2018,
  • [47] Approximation of Time-Frequency Shift Equivariant Maps by Neural Networks
    Lee, Dae Gwan
    MATHEMATICS, 2024, 12 (23)
  • [48] Extending GCC-PHAT using Shift Equivariant Neural Networks
    Berg, Axel
    O'Connor, Mark
    Astrom, Kalle
    Oskarsson, Magnus
    INTERSPEECH 2022, 2022, : 1791 - 1795
  • [49] SE(3) Equivariant Graph Neural Networks with Complete Local Frames
    Du, Weitao
    Zhang, He
    Du, Yuanqi
    Meng, Qi
    Chen, Wei
    Zheng, Nanning
    Shao, Bin
    Liu, Tie-Yan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [50] A Comparison between Invariant and Equivariant Classical and Quantum Graph Neural Networks
    Forestano, Roy T.
    Cara, Marcal Comajoan
    Dahale, Gopal Ramesh
    Dong, Zhongtian
    Gleyzer, Sergei
    Justice, Daniel
    Kong, Kyoungchul
    Magorsch, Tom
    Matchev, Konstantin T.
    Matcheva, Katia
    Unlu, Eyup B.
    AXIOMS, 2024, 13 (03)