Large Time Behavior for Solutions to the Anisotropic Navier-Stokes Equations in a 3D Half-space

被引:0
|
作者
Fujii, Mikihiro [1 ]
Li, Yang [2 ,3 ]
机构
[1] Nagoya City Univ, Grad Sch Sci, Nagoya 4678501, Japan
[2] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
[3] Anhui Univ, Ctr Pure Math, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
GLOBAL WELLPOSED PROBLEM; DECAY; FLOW; STABILITY;
D O I
10.1093/imrn/rnae265
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the large time behavior of the solution to the anisotropic Navier-Stokes equations in a $3$D half-space. Investigating the precise anisotropic nature of linearized solutions, we obtain the optimal decay estimates for the nonlinear global solutions in anisotropic Lebesgue norms. In particular, we reveal the enhanced dissipation mechanism for the third component of velocity field. We notice that, in contrast to the whole space case, some difficulties arises on the $L<^>{1}(\mathbb{R}<^>{3}_{+})$-estimates of the solution due to the nonlocal operators appearing in the linear solution formula. To overcome this, we introduce suitable Besov-type spaces and employ the Littlewood-Paley analysis on the tangential space.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] RESCALINGS AT POSSIBLE SINGULARITIES OF NAVIER-STOKES EQUATIONS IN HALF-SPACE
    Seregin, G.
    Sverak, V.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2014, 25 (05) : 815 - 833
  • [32] Global Weak Solutions of the Navier-Stokes Equations for Intermittent Initial Data in Half-Space
    Bradshaw, Zachary
    Kukavica, Igor
    Ozanski, Wojciech S.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2022, 245 (01) : 321 - 371
  • [33] ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS IN THE HALF SPACE
    Huang, Feimin
    Li, Jing
    Shi, Xiaoding
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (03) : 639 - 654
  • [34] AN ANISOTROPIC REGULARITY CRITERION FOR THE 3D NAVIER-STOKES EQUATIONS
    jia, Xuanji
    Jiang, Zaihong
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (03) : 1299 - 1306
  • [35] Asymptotic behavior of D-solutions to the steady Navier-Stokes flow in an exterior domain of a half-space
    Guo, Zhengguang
    Wittwer, Peter
    Zhou, Yong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06):
  • [36] Global Stability of Large Solutions to the 3D Compressible Navier-Stokes Equations
    He, Lingbing
    Huang, Jingchi
    Wang, Chao
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 234 (03) : 1167 - 1222
  • [37] EXISTENCE AND UNIQUENESS OF GLOBAL SOLUTIONS FOR THE MODIFIED ANISOTROPIC 3D NAVIER-STOKES EQUATIONS
    Bessaih, Hakima
    Trabelsi, Saber
    Zorgati, Hamdi
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (06): : 1817 - 1823
  • [38] Anisotropic Regularity Conditions for the Suitable Weak Solutions to the 3D Navier-Stokes Equations
    Wang, Yanqing
    Wu, Gang
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2016, 18 (04) : 699 - 716
  • [39] PERIODIC SOLUTIONS AND THEIR STABILITY TO THE NAVIER-STOKES EQUATIONS ON A HALF SPACE
    Hieber, Matthias
    Nguyen, Thieu Huy
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (5-6): : 1899 - 1910
  • [40] A critical functional framework for the inhomogeneous Navier-Stokes equations in the half-space
    Danchin, Raphael
    Mucha, Piotr Boguslaw
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (03) : 881 - 927