Large Time Behavior for Solutions to the Anisotropic Navier-Stokes Equations in a 3D Half-space
被引:0
|
作者:
Fujii, Mikihiro
论文数: 0引用数: 0
h-index: 0
机构:
Nagoya City Univ, Grad Sch Sci, Nagoya 4678501, JapanNagoya City Univ, Grad Sch Sci, Nagoya 4678501, Japan
Fujii, Mikihiro
[1
]
Li, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
Anhui Univ, Ctr Pure Math, Hefei 230601, Peoples R ChinaNagoya City Univ, Grad Sch Sci, Nagoya 4678501, Japan
Li, Yang
[2
,3
]
机构:
[1] Nagoya City Univ, Grad Sch Sci, Nagoya 4678501, Japan
[2] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
[3] Anhui Univ, Ctr Pure Math, Hefei 230601, Peoples R China
We consider the large time behavior of the solution to the anisotropic Navier-Stokes equations in a $3$D half-space. Investigating the precise anisotropic nature of linearized solutions, we obtain the optimal decay estimates for the nonlinear global solutions in anisotropic Lebesgue norms. In particular, we reveal the enhanced dissipation mechanism for the third component of velocity field. We notice that, in contrast to the whole space case, some difficulties arises on the $L<^>{1}(\mathbb{R}<^>{3}_{+})$-estimates of the solution due to the nonlocal operators appearing in the linear solution formula. To overcome this, we introduce suitable Besov-type spaces and employ the Littlewood-Paley analysis on the tangential space.
机构:
Waseda Univ, Sch Sci & Engn, Dept Math Sci, Shinjuku Ku, Tokyo 1698555, JapanWaseda Univ, Sch Sci & Engn, Dept Math Sci, Shinjuku Ku, Tokyo 1698555, Japan
Kubo, Takayuki
Shibata, Yoshihiro
论文数: 0引用数: 0
h-index: 0
机构:
Waseda Univ, Sch Sci & Engn, Dept Math Sci, Shinjuku Ku, Tokyo 1698555, JapanWaseda Univ, Sch Sci & Engn, Dept Math Sci, Shinjuku Ku, Tokyo 1698555, Japan