Establishing reference interval bounds for censored and contaminated data

被引:0
|
作者
Bruun, Niels Henrik [1 ]
Torp, Nanna Maria Uldall [2 ,3 ]
Andersen, Stine Linding [2 ,3 ]
机构
[1] Aalborg Univ Hosp, Res Data & Biostat, Aalborg, Denmark
[2] Aalborg Univ Hosp, Dept Clin Biochem, Aalborg, Denmark
[3] Aalborg Univ, Dept Clin Med, Aalborg, Denmark
来源
STATA JOURNAL | 2025年 / 25卷 / 01期
关键词
st0769; ros; reference interval bounds; censored data; regression-of order-statistics method; Box-Cox transformation; WATER-QUALITY DATA; DISTRIBUTIONAL PARAMETERS;
D O I
10.1177/1536867X251322968
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Reference intervals are essential across the medical and environmental fields. A reference interval (for example, the 95 % central prediction interval) defines the normal range of measurements for a specific physiological parameter in healthy individuals. Inappropriate reference interval bounds may occur because of censored measurements (due to instrument limitations) or contaminated data (by accidentally sampling nonhealthy individuals). To address this, we propose using the regression-on-order-statistics (ROS) method combined with an optimal Box-Cox transformation. The ROS method involves regressing Gaussian scores based on ranks from ordered noncensored Box-Cox transformed measurements. To find the optimal Box-Cox transformation, we maximize the adjusted R 2 when estimating the mean and standard deviation through regression of empirical Gaussian quantiles on measurements. We demonstrate how to identify contamination and introduce a new command, ros. Real-life data illustrate the effectiveness of the ROS method.
引用
收藏
页码:151 / 168
页数:18
相关论文
共 50 条
  • [31] Cox regression for interval censored and current status data
    Caroni, Chrys
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2011, 24 (11A): : 125 - 132
  • [32] Survival trees for interval-censored survival data
    Fu, Wei
    Simonoff, Jeffrey S.
    STATISTICS IN MEDICINE, 2017, 36 (30) : 4831 - 4842
  • [33] Hypothesis Testing with Paired Partly Interval Censored Data
    Cai, Ding-jiao
    Lu, Bo
    Tong, Xing-wei
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2019, 35 (03): : 541 - 548
  • [34] A Bezier curve method in interval-censored data
    Yun, Eunyoung
    Kim, Jinmi
    Kim, Choongrak
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2014, 43 (04) : 621 - 629
  • [35] Frequentist and Bayesian approaches for interval-censored data
    Guadalupe Gómez
    M. Luz Calle
    Ramon Oller
    Statistical Papers, 2004, 45 : 139 - 173
  • [36] Bayesian analysis of clustered interval-censored data
    Wong, MCM
    Lam, KF
    Lo, ECM
    JOURNAL OF DENTAL RESEARCH, 2005, 84 (09) : 817 - 821
  • [37] Choosing a reliability inspection plan for interval censored data
    Lu, Lu
    Anderson-Cook, Christine M.
    QUALITY ENGINEERING, 2017, 29 (03) : 512 - 535
  • [38] Semiparametric regression analysis of interval-censored data
    Goetghebeur, E
    Ryan, L
    BIOMETRICS, 2000, 56 (04) : 1139 - 1144
  • [39] ESTIMATING THE SURVIVAL PROBABILITY WITH INTERVAL-CENSORED DATA
    Tridello, G.
    Bogaerts, J.
    BONE MARROW TRANSPLANTATION, 2014, 49 : S429 - S429
  • [40] Hypothesis Testing with Paired Partly Interval Censored Data
    Ding-jiao CAI
    Bo LU
    Xing-wei TONG
    ActaMathematicaeApplicataeSinica, 2019, 35 (03) : 541 - 548