Establishing reference interval bounds for censored and contaminated data

被引:0
|
作者
Bruun, Niels Henrik [1 ]
Torp, Nanna Maria Uldall [2 ,3 ]
Andersen, Stine Linding [2 ,3 ]
机构
[1] Aalborg Univ Hosp, Res Data & Biostat, Aalborg, Denmark
[2] Aalborg Univ Hosp, Dept Clin Biochem, Aalborg, Denmark
[3] Aalborg Univ, Dept Clin Med, Aalborg, Denmark
来源
STATA JOURNAL | 2025年 / 25卷 / 01期
关键词
st0769; ros; reference interval bounds; censored data; regression-of order-statistics method; Box-Cox transformation; WATER-QUALITY DATA; DISTRIBUTIONAL PARAMETERS;
D O I
10.1177/1536867X251322968
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Reference intervals are essential across the medical and environmental fields. A reference interval (for example, the 95 % central prediction interval) defines the normal range of measurements for a specific physiological parameter in healthy individuals. Inappropriate reference interval bounds may occur because of censored measurements (due to instrument limitations) or contaminated data (by accidentally sampling nonhealthy individuals). To address this, we propose using the regression-on-order-statistics (ROS) method combined with an optimal Box-Cox transformation. The ROS method involves regressing Gaussian scores based on ranks from ordered noncensored Box-Cox transformed measurements. To find the optimal Box-Cox transformation, we maximize the adjusted R 2 when estimating the mean and standard deviation through regression of empirical Gaussian quantiles on measurements. We demonstrate how to identify contamination and introduce a new command, ros. Real-life data illustrate the effectiveness of the ROS method.
引用
收藏
页码:151 / 168
页数:18
相关论文
共 50 条
  • [1] Estimation of the density for censored and contaminated data
    Van Keilegom, Ingrid
    Kekec, Elif
    STAT, 2024, 13 (01):
  • [2] Estimation with Interval Censored Data and Covariates
    Mark J. van der Laan
    Alan Hubbard
    Lifetime Data Analysis, 1997, 3 (1) : 77 - 91
  • [3] Sequential Testing with Interval Censored Data
    Quan, H.
    Yu, K. F.
    Journal of Statistical Computation and Simulation, 1994, 51 (2-4)
  • [4] Linear regression with interval censored data
    Li, G
    Zhang, CH
    ANNALS OF STATISTICS, 1998, 26 (04): : 1306 - 1327
  • [5] REGRESSION WITH INTERVAL-CENSORED DATA
    RABINOWITZ, D
    TSIATIS, A
    ARAGON, J
    BIOMETRIKA, 1995, 82 (03) : 501 - 513
  • [6] Quantile regression for interval censored data
    Zhou, Xiuqing
    Feng, Yanqin
    Du, Xiuli
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (08) : 3848 - 3863
  • [7] Establishing a pediatric reference interval for plasma calprotectin
    Blavnsfeldt, Anne-Birgitte Garm
    Knudsen, Cindy Soendersoe
    Parkner, Tina
    SCANDINAVIAN JOURNAL OF CLINICAL & LABORATORY INVESTIGATION, 2024, 84 (02): : 121 - 124
  • [8] Nonparametric regression with interval-censored data
    Wen Li Deng
    Zu Kang Zheng
    Ri Quan Zhang
    Acta Mathematica Sinica, English Series, 2014, 30 : 1422 - 1434
  • [9] A New Algorithm for MLE with Interval Censored Data
    Conghua CHENG1
    2. School of Mathematics and Statistics
    Journal of Mathematical Research with Applications, 2012, (06) : 735 - 742
  • [10] Empirical Density Estimation for Interval Censored Data
    Stoimenova, Eugenia
    AUSTRIAN JOURNAL OF STATISTICS, 2008, 37 (01) : 119 - 128