Computational advances in discovering cryptic pockets for drug discovery

被引:0
|
作者
Bemelmans, Martijn P. [1 ,4 ]
Cournia, Zoe [2 ]
Damm-Ganamet, Kelly L. [3 ]
Gervasio, Francesco L. [4 ]
Pande, Vineet [1 ]
机构
[1] Johnson & Johnson Innovat Med, Comp Aided Drug Design, Sil Discovery, Therapeut Discovery, Turnhoutseweg 30, B-2340 Beerse, Belgium
[2] Acad Athens, Biomed Res Fdn, 4 Soranou Ephesiou, Athens 11527, Greece
[3] Johnson & Johnson Innovat Med, Comp Aided Drug Design, Sil Discovery, Therapeut Discovery, 3210 Merryfield Row, San Diego, CA 92121 USA
[4] Univ Geneva, Sch Pharmaceut Sci, Rue Michel Servet 1, CH-1206 Geneva, Switzerland
基金
瑞士国家科学基金会;
关键词
cryptic pockets; allostery; mixed-solvent molecular dynamics; enhanced; sampling; ALLOSTERIC SITES; BINDING-SITES;
D O I
10.1016/j.sbi.2024.102975
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A number of promising therapeutic target proteins have been considered "undruggable" due to the lack of well-defined ligandable pockets. Substantial research in protein dynamics has elucidated the existence of "cryptic" pockets that only exist transiently and become favorable for binding in the presence of a ligand. These pockets provide an avenue to target challenging proteins, inspiring the development of multiple computational methods. This review highlights established cryptic pocket modeling approaches like mixed solvent molecular dynamics and recent applications of enhanced sampling and AI-based methods in therapeutically relevant proteins.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Current Advances in Computational Approaches for Drug Discovery-Part I
    Gupta, Amit K.
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2018, 18 (26) : 2201 - 2201
  • [12] Current Advances in Computational Approaches for Drug Discovery-Part II
    Gupta, Amit K.
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2018, 18 (27) : 2267 - 2267
  • [13] Advances in Cheminformatics: Drug Discovery, Computational Toxicology and Nanomaterials (Part II)
    Afantitis, Antreas
    Melagraki, Georgia
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2015, 18 (04) : 333 - 334
  • [14] Computational drug discovery
    Ou-Yang, Si-sheng
    Lu, Jun-yan
    Kong, Xiang-qian
    Liang, Zhong-jie
    Luo, Cheng
    Jiang, Hualiang
    ACTA PHARMACOLOGICA SINICA, 2012, 33 (09) : 1131 - 1140
  • [15] Computational drug discovery
    Si-sheng Ou-Yang
    Jun-yan Lu
    Xiang-qian Kong
    Zhong-jie Liang
    Cheng Luo
    Hualiang Jiang
    Acta Pharmacologica Sinica, 2012, 33 : 1131 - 1140
  • [16] What Features of Ligands Are Relevant to the Opening of Cryptic Pockets in Drug Targets?
    Xia, Zhonghua
    Karpov, Pavel
    Popowicz, Grzegorz
    Sattler, Michael
    Tetko, Igor, V
    INFORMATICS-BASEL, 2022, 9 (01):
  • [17] Along the allostery stream: Recent advances in computational methods for allosteric drug discovery
    Ni, Duan
    Chai, Zongtao
    Wang, Ying
    Li, Mingyu
    Yu, Zhengtian
    Liu, Yaqin
    Lu, Shaoyong
    Zhang, Jian
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2022, 12 (04)
  • [18] Identifying and Exploiting Cryptic Pockets
    Bowman, Greg R.
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 160A - 160A
  • [19] Are Cryptic Pockets in β-lactamases Functional?
    Knoverek, Catherine R.
    Raavicharla, Shreya
    Porter, Justin R.
    Mallimadugula, Upasana L.
    Wood, Emily
    Bowman, Gregory R.
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 52A - 52A
  • [20] Advances in Cytoprotective Drug Discovery
    Yurchenko, Ekaterina A.
    Aminin, Dmitry L.
    MOLECULES, 2023, 28 (11):