SRA-YOLO: Spatial Resolution Adaptive YOLO for Semi-supervised Cross-Domain Aerial Object Detection

被引:0
|
作者
Huang, Junhao [1 ]
Xue, Jian [1 ]
Li, Yuqiu [1 ]
Wu, Hao [1 ]
Lu, Ke [1 ]
机构
[1] Univ Chinese Acad Sci, Sch Engn Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Semi-Supervised Learning; Cross-Domain Aerial Object Detection; Spatial Resolution; Domain Adaptation; Ground Sample Distance;
D O I
10.1007/978-3-031-72335-3_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study introduces SRA-YOLO, a novel framework tailored for Semi-Supervised Cross-Domain Aerial Object Detection, leveraging the robust YOLOv5 architecture. Aimed at addressing the challenges of spatial resolution variances and data scarcity in aerial imagery, SRA-YOLO employs an innovative Teacher-Student strategy integrating strategic knowledge distillation to utilize both labeled and unlabeled data effectively. Our approach stands out by introducing adaptive training data generation techniques, specifically Adaptive Zoom-In and Zoom-Out methods, to counteract domain discrepancies and align Ground Sample Distance (GSD) across diverse aerial conditions. Through extensive experiments on benchmark datasets, notably DOTA-v1.5, DOTA-v2.0 and xView, our method demonstrates superior adaptability and performance, setting a new baseline for aerial object detection in semi-supervised and cross-domain scenarios.
引用
收藏
页码:215 / 228
页数:14
相关论文
共 50 条
  • [1] SSDA-YOLO: Semi-supervised domain adaptive YOLO for cross-domain object detection
    Zhou, Huayi
    Jiang, Fei
    Lu, Hongtao
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 229
  • [2] MULTISCALE DOMAIN ADAPTIVE YOLO FOR CROSS-DOMAIN OBJECT DETECTION
    Hnewa, Mazin
    Radha, Hayder
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3323 - 3327
  • [3] YOLO-G: Improved YOLO for cross-domain object detection
    Wei, Jian
    Wang, Qinzhao
    Zhao, Zixu
    PLOS ONE, 2023, 18 (09):
  • [4] Improving Cross-Domain Semi-Supervised Object Detection with Adversarial Domain Adaptation
    Menke, Maximilian
    Wenzel, Thomas
    Schwung, Andreas
    2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,
  • [5] Cross-Domain Adaptive Clustering for Semi-Supervised Domain Adaptation
    Li, Jichang
    Li, Guanbin
    Shi, Yemin
    Yu, Yizhou
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 2505 - 2514
  • [6] Cross-Domain Object Detection for Autonomous Driving: A Stepwise Domain Adaptative YOLO Approach
    Li, Guofa
    Ji, Zefeng
    Qu, Xingda
    Zhou, Rui
    Cao, Dongpu
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2022, 7 (03): : 603 - 615
  • [7] Adaptive Semi-supervised Learning for Cross-domain Sentiment Classification
    He, Ruidan
    Lee, Wee Sun
    Ng, Hwee Tou
    Dahlmeier, Daniel
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 3467 - 3476
  • [8] SAR-CDSS: A Semi-Supervised Cross-Domain Object Detection from Optical to SAR Domain
    Luo, Cheng
    Zhang, Yueting
    Guo, Jiayi
    Hu, Yuxin
    Zhou, Guangyao
    You, Hongjian
    Ning, Xia
    REMOTE SENSING, 2024, 16 (06)
  • [9] Tri-Flow-YOLO: Counter helps to improve cross-domain object detection
    Wei, Jian
    Wang, Qinzhao
    HELIYON, 2024, 10 (11)
  • [10] Cross-Domain Semi-Supervised Learning Using Feature Formulation
    Zhu, Xingquan
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2011, 41 (06): : 1627 - 1638