Strengthening incomplete multi-view clustering: An attention contrastive learning method

被引:0
|
作者
Hou, Shudong [1 ]
Guo, Lanlan [1 ]
Wei, Xu [1 ]
机构
[1] Anhui Univ Technol, Sch Comp Sci & Technol, Maanshan 243002, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Incomplete multi-view clustering; Cross-view encoder; Contrastive learning; High confidence; Graph constraint;
D O I
10.1016/j.imavis.2025.105493
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Incomplete multi-view clustering presents greater challenges than traditional multi-view clustering. In recent years, significant progress has been made in this field, multi-view clustering relies on the consistency and integrity of views to ensure the accurate transmission of data information. However, during the process of data collection and transmission, data loss is inevitable, leading to partial view loss and increasing the difficulty of joint learning on incomplete multi-view data. To address this issue, we propose a multi-view contrastive learning framework based on the attention mechanism. Previous contrastive learning mainly focused on the relationships between isolated sample pairs, which limited the robustness of the method. Our method selects positive samples from both global and local perspectives by utilizing the nearest neighbor graph to maximize the correlation between local features and latent features of each view. Additionally, we use a cross-view encoder network with self-attention structure to fuse the low dimensional representations of each view into a joint representation, and guide the learning of the joint representation through a high confidence structure. Furthermore, we introduce graph constraint learning to explore potential neighbor relationships among instances to facilitate data reconstruction. The experimental results on six multi-view datasets demonstrate that our method exhibits significant effectiveness and superiority compared to existing methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Global and local combined contrastive learning for multi-view clustering
    Gu, Wenjie
    Zhu, Changming
    MULTIMEDIA SYSTEMS, 2024, 30 (05)
  • [32] MULTI-VIEW SUBSPACE CLUSTERING WITH CONSENSUS GRAPH CONTRASTIVE LEARNING
    Zhang, Jie
    Sun, Yuan
    Guo, Yu
    Wang, Zheng
    Nie, Feiping
    Wang, Fei
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6340 - 6344
  • [33] Adversarial Incomplete Multi-view Clustering
    Xu, Cai
    Guan, Ziyu
    Zhao, Wei
    Wu, Hongchang
    Niu, Yunfei
    Ling, Beilei
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3933 - 3939
  • [34] Projective Incomplete Multi-View Clustering
    Deng, Shijie
    Wen, Jie
    Liu, Chengliang
    Yan, Ke
    Xu, Gehui
    Xu, Yong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 10539 - 10551
  • [35] Incomplete Multi-view Clustering via Structured Graph Learning
    Wu, Jie
    Zhuge, Wenzhang
    Tao, Hong
    Hou, Chenping
    Zhang, Zhao
    PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2018, 11012 : 98 - 112
  • [36] Incomplete multi-view spectral clustering
    Zhao, Qianli
    Zong, Linlin
    Zhang, Xianchao
    Liu, Xinyue
    Yu, Hong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (03) : 2991 - 3001
  • [37] Incomplete Multi-View Clustering With Joint Partition and Graph Learning
    Li, Lusi
    Wan, Zhiqiang
    He, Haibo
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 589 - 602
  • [38] A novel consensus learning approach to incomplete multi-view clustering
    Liu, Jianlun
    Teng, Shaohua
    Fei, Lunke
    Zhang, Wei
    Fang, Xiaozhao
    Zhang, Zhuxiu
    Wu, Naiqi
    PATTERN RECOGNITION, 2021, 115
  • [39] Essential anchor graph learning for incomplete multi-view clustering
    Song, Peng
    Mu, Jinshuai
    Cheng, Yuanbo
    Liu, Zhaohu
    Zheng, Wenming
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 145
  • [40] Incomplete multi-view clustering via kernelized graph learning
    Xia, Dongxue
    Yang, Yan
    Yang, Shuhong
    Li, Tianrui
    INFORMATION SCIENCES, 2023, 625 : 1 - 19