Prediction of Coronary Artery Calcium using Retinal Photographs via Deep Learning: Korean, Spanish and Indian populations

被引:0
|
作者
Tan, Yong Yu
Fabiano, Ronaldo Correa
Generoso, Giuliano
Cho, Jun Hwan
Choi, Beom-hee
Cho, Yunnie
Thakur, Sahil
Rim, Tyler Hyungtaek
Lee, Chan Joo
Masip, David
Barriada, Ruben
Servat, Olga
Hernandez, Cristina
Cheng, Ching-Yu
Savoy, Florian
Nishanth, K. R.
Rao, Divya
Bensenor, Isabela
Wong, Tien Yin
Simo, Rafael
Bittencourt, Marcio
机构
关键词
D O I
10.1161/circ.150.suppl_1.4140094
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
4140094
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Prediction of 3D Cardiovascular hemodynamics before and after coronary artery bypass surgery via deep learning
    Li, Gaoyang
    Wang, Haoran
    Zhang, Mingzi
    Tupin, Simon
    Qiao, Aike
    Liu, Youjun
    Ohta, Makoto
    Anzai, Hitomi
    COMMUNICATIONS BIOLOGY, 2021, 4 (01)
  • [42] Prediction of 3D Cardiovascular hemodynamics before and after coronary artery bypass surgery via deep learning
    Gaoyang Li
    Haoran Wang
    Mingzi Zhang
    Simon Tupin
    Aike Qiao
    Youjun Liu
    Makoto Ohta
    Hitomi Anzai
    Communications Biology, 4
  • [43] Prediction of visual field progression with serial optic disc photographs using deep learning
    Mohammadzadeh, Vahid
    Wu, Sean
    Davis, Tyler
    Vepa, Arvind
    Morales, Esteban
    Besharati, Sajad
    Edalati, Kiumars
    Martinyan, Jack
    Rafiee, Mahshad
    Martynian, Arthur
    Scalzo, Fabien
    Caprioli, Joseph
    Nouri-Mahdavi, Kouros
    BRITISH JOURNAL OF OPHTHALMOLOGY, 2024, 108 (08) : 1107 - 1113
  • [44] Deep learning approach for diabetes prediction using PIMA Indian dataset
    Naz, Huma
    Ahuja, Sachin
    JOURNAL OF DIABETES AND METABOLIC DISORDERS, 2020, 19 (01) : 391 - 403
  • [45] Deep learning approach for diabetes prediction using PIMA Indian dataset
    Huma Naz
    Sachin Ahuja
    Journal of Diabetes & Metabolic Disorders, 2020, 19 : 391 - 403
  • [46] Deep learning can generate traditional retinal fundus photographs using ultra-widefield images via generative adversarial networks
    Yoo, Tae Keun
    Ryu, Ik Hee
    Kim, Jin Kuk
    Lee, In Sik
    Kim, Jung Sub
    Kim, Hong Kyu
    Choi, Joon Yul
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 197 (197)
  • [47] Prediction of hypertension, hyperglycemia and dyslipidemia from retinal fundus photographs via deep learning: A cross-sectional study of chronic diseases in central China
    Zhang, Li
    Yuan, Mengya
    An, Zhen
    Zhao, Xiangmei
    Wu, Hui
    Li, Haibin
    Wang, Ya
    Sun, Beibei
    Li, Huijun
    Ding, Shibin
    Zeng, Xiang
    Chao, Ling
    Li, Pan
    Wu, Weidong
    PLOS ONE, 2020, 15 (05):
  • [48] Polygenic Risk Score and Deep Learning Using Chest Radiographs: Complementary Prediction of Incident Coronary Artery Disease
    Paruchuri, Kaavya
    Raghu, Vineet
    Hoffmann, Udo
    Natarajan, Pradeep
    Lu, Michael T.
    CIRCULATION, 2021, 144
  • [49] Deep-Learning-Based Coronary Artery Calcium Detection from CT Image
    Lee, Sungjin
    Rim, Beanbonyka
    Jou, Sung-Shick
    Gil, Hyo-Wook
    Jia, Xibin
    Lee, Ahyoung
    Hong, Min
    SENSORS, 2021, 21 (21)
  • [50] Deep learning for automated exclusion of cardiac CT examinations negative for coronary artery calcium
    van den Oever, Leonardus B.
    Cornelissen, Ludo
    Vonder, Marleen
    Xia, Congying
    van Bolhuis, Jurjen N.
    Vliegenthart, Rozemarijn
    Veldhuis, Raymond N. J.
    de Bock, Geertruida H.
    Oudkerk, Matthijs
    van Ooijen, Peter M. A.
    EUROPEAN JOURNAL OF RADIOLOGY, 2020, 129