Optimized dependency-aware task offloading and resource allocation via multi-stage Imitation Learning in mobile edge computing

被引:0
|
作者
Niu, Yuzhe [1 ]
Liu, Li [1 ]
Sha, Feng [1 ]
Li, Lin [1 ]
机构
[1] Xiamen Univ Technol, Sch Comp & Informat Engn, Xiamen, Peoples R China
关键词
Mobile Edge Computing; Deep Reinforcement Learning; Imitation Learning; Dependent Task Offloading;
D O I
10.1145/3674225.3674326
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the realm of mobile edge computing, the energy consumption and stability of offloading can be significantly influenced by random task arrivals and constraints imposed by task dependencies. To address this challenge, this study proposes a Multi-stage Generative Adversarial Imitation Learning (Multi-stage GAIL) algorithm. This algorithm engages in multi-stage continuous optimization to handle the offloading and allocation processes of dependent tasks. By integrating a simulation system, the algorithm effectively disentangles dependency relationships and generates a queue of tasks ready for execution. It obtains the optimal decision in multiple stages, effectively addressing the impact of the random task arrivals and dependency constraints on task offloading and allocation. Consequently, it leads to enhancements in system performance compared to the baseline algorithm.
引用
收藏
页码:560 / 565
页数:6
相关论文
共 50 条
  • [41] QoS-aware Task Offloading with NOMA-based Resource Allocation for Mobile Edge Computing
    Zeng, Luyuan
    Wen, Wushao
    Dong, Chongwu
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 1242 - 1247
  • [42] Joint task offloading and resource allocation for multi-user collaborative mobile edge computing
    An, Xiaobei
    Li, Yanjun
    Chen, Yuzhe
    Li, Tingting
    COMPUTER NETWORKS, 2024, 250
  • [43] Task Offloading and Resource Allocation in IoT Based Mobile Edge Computing Using Deep Learning
    Abdullaev, Ilyos
    Prodanova, Natalia
    Bhaskar, K. Aruna
    Lydia, E. Laxmi
    Kadry, Seifedine
    Kim, Jungeun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (02): : 1463 - 1477
  • [44] A Quantum Reinforcement Learning Approach for Joint Resource Allocation and Task Offloading in Mobile Edge Computing
    Wei, Xinliang
    Gao, Xitong
    Ye, Kejiang
    Xu, Cheng-Zhong
    Wang, Yu
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (04) : 2580 - 2593
  • [45] Task Offloading and Resource Allocation for Mobile Edge Computing by Deep Reinforcement Learning Based on SARSA
    Alfakih, Taha
    Hassan, Mohammad Mehedi
    Gumaei, Abdu
    Savaglio, Claudio
    Fortino, Giancarlo
    IEEE ACCESS, 2020, 8 : 54074 - 54084
  • [46] Stackelberg-Game-Based Dependency-Aware Task Offloading and Resource Pricing in Vehicular Edge Networks
    Zhao, Liang
    Huang, Shuai
    Meng, Deng
    Liu, Bingbing
    Zuo, Qingjun
    Leung, Victor C. M.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (19): : 32337 - 32349
  • [47] Bridging Incentives and Dependencies: An Iterative Combinatorial Auction Approach to Dependency-Aware Offloading in Mobile Edge Computing
    Kang, Hong
    Li, Minghao
    Lin, Lehao
    Fan, Sizheng
    Cai, Wei
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 12113 - 12130
  • [48] Task Offloading and Resource Allocation for Edge-Enabled Mobile Learning
    Yang, Ziyan
    Zhong, Shaochun
    CHINA COMMUNICATIONS, 2023, 20 (04) : 326 - 339
  • [49] Truthful mechanism for joint resource allocation and task offloading in mobile edge computing
    Liu, Xi
    Liu, Jun
    Li, Weidong
    COMPUTER NETWORKS, 2024, 254
  • [50] Task Offloading and Resource Allocation for Edge-Enabled Mobile Learning
    Ziyan Yang
    Shaochun Zhong
    China Communications, 2023, 20 (04) : 326 - 339