A framework of multi-view machine learning for biological spectral unmixing of fluorophores with overlapping excitation and emission spectra

被引:0
|
作者
Wang, Ruogu [1 ,2 ]
Feng, Yunlong [3 ]
Valm, Alex M. [1 ,2 ]
机构
[1] SUNY Albany, Dept Biol, 1400 Washington Ave, Albany, NY 12222 USA
[2] SUNY Albany, RNA Inst, 1400 Washington Ave, Albany, NY 12222 USA
[3] SUNY Albany, Dept Math & Stat, 1400 Washington Ave, Albany, NY 12222 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
multi-view machine learning; fluorescence imaging; biological spectral unmixing; spectral overlap; SPARSE;
D O I
10.1093/bib/bbaf005
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The accuracy of assigning fluorophore identity and abundance, known as spectral unmixing, in biological fluorescence microscopy images remains a significant challenge due to the substantial overlap in emission spectra among fluorophores. In traditional laser scanning confocal spectral microscopy, fluorophore information is acquired by recording emission spectra with a single combination of discrete excitation wavelengths. However, organic fluorophores possess characteristic excitation spectra in addition to their unique emission spectral signatures. In this paper, we propose a generalized multi-view machine learning approach that leverages both excitation and emission spectra to significantly improve the accuracy in differentiating multiple highly overlapping fluorophores in a single image. By recording emission spectra of the same field with multiple combinations of excitation wavelengths, we obtain data representing different views of the underlying fluorophore distribution in the sample. We then propose a multi-view machine learning framework that allows for the flexible incorporation of noise information and abundance constraints, enabling the extraction of spectral signatures from reference images and efficient recovery of corresponding abundances in unknown mixed images. Numerical experiments on simulated image data demonstrate the method's efficacy in improving accuracy, allowing for the discrimination of 100 fluorophores with highly overlapping spectra. Furthermore, validation on images of mixtures of fluorescently labeled Escherichia coli highlights the power of the proposed multi-view strategy in discriminating fluorophores with spectral overlap in real biological images.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Adaptive sparse graph learning for multi-view spectral clustering
    Qingjiang Xiao
    Shiqiang Du
    Kaiwu Zhang
    Jinmei Song
    Yixuan Huang
    Applied Intelligence, 2023, 53 : 14855 - 14875
  • [22] Multi-view spectral clustering via sparse graph learning
    Hu, Zhanxuan
    Nie, Feiping
    Chang, Wei
    Hao, Shuzheng
    Wang, Rong
    Li, Xuelong
    NEUROCOMPUTING, 2020, 384 : 1 - 10
  • [23] Multi-view Spectral Clustering Based on Topological Manifold Learning
    Shi, Shaojun
    Liu, Yibing
    Zhang, Canyu
    Chen, Xueling
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT 1, 2025, 15031 : 251 - 265
  • [24] Sparse Graph Tensor Learning for Multi-View Spectral Clustering
    Chen, Man-Sheng
    Li, Zhi-Yuan
    Lin, Jia-Qi
    Wang, Chang-Dong
    Huang, Dong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, : 1 - 10
  • [25] Multiple Kernel Learning Based Multi-view Spectral Clustering
    Guo, Dongyan
    Zhang, Jian
    Liu, Xinwang
    Cui, Ying
    Zhao, Chunxia
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 3774 - 3779
  • [26] Adaptive graph fusion learning for multi-view spectral clustering
    Zhou, Bo
    Liu, Wenliang
    Shen, Meizhou
    Lu, Zhengyu
    Zhang, Wenzhen
    Zhang, Luyun
    PATTERN RECOGNITION LETTERS, 2023, 176 : 102 - 108
  • [27] Sparse Graph Tensor Learning for Multi-View Spectral Clustering
    Chen, Man-Sheng
    Li, Zhi-Yuan
    Lin, Jia-Qi
    Wang, Chang-Dong
    Huang, Dong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (05): : 3534 - 3543
  • [28] Deep Spectral Representation Learning From Multi-View Data
    Huang, Zhenyu
    Zhou, Joey Tianyi
    Zhu, Hongyuan
    Zhang, Changqing
    Lv, Jiancheng
    Peng, Xi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 5352 - 5362
  • [29] Machine Learning Model for Multi-View Visualization of Medical Images
    Pradhan, Nitesh
    Dhaka, Vijaypal Singh
    Rani, Geeta
    Chaudhary, Himanshu
    COMPUTER JOURNAL, 2022, 65 (04): : 805 - 817
  • [30] A structural consensus representation learning framework for multi-view clustering
    Bai, Ruina
    Huang, Ruizhang
    Qin, Yongbin
    Chen, Yanping
    Xu, Yong
    KNOWLEDGE-BASED SYSTEMS, 2024, 283