Predicting Drug Mechanics by Deep Learning on Gene and Cell Activities

被引:0
|
作者
Dutta, Abhishek [1 ]
机构
[1] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT 06269 USA
关键词
D O I
10.1109/EMBC48229.2022.9871391
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The identification of protein target and mechanism of disease are fundamentally important in drug discovery. A pipeline for predicting mechanism of action (MoA) for drug molecules based on gene expression and cell viability data is developed and demonstrated on experimental data. A deep learning network learns the known MoAs over thousands of gene expression and cell viability training data and is shown to predict the unknown MoAs over test data with high efficacy.
引用
收藏
页码:2916 / 2919
页数:4
相关论文
共 50 条
  • [41] Predicting Drug-Target Interactions with Deep-Embedding Learning of Graphs and Sequences
    Chen, Wei
    Chen, Guanxing
    Zhao, Lu
    Chen, Calvin Yu-Chian
    JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 125 (25): : 5633 - 5642
  • [42] Predicting anticancer drug sensitivity on distributed data sources using federated deep learning
    Xu, Xiaolu
    Qi, Zitong
    Han, Xiumei
    Xu, Aiguo
    Geng, Zhaohong
    He, Xinyu
    Ren, Yonggong
    Duo, Zhaojun
    HELIYON, 2023, 9 (08)
  • [43] Predicting Drug Response and Synergy Using a Deep Learning Model of Human Cancer Cells
    Kuenzi, Brent M.
    Park, Jisoo
    Fong, Samson H.
    Sanchez, Kyle S.
    Lee, John
    Kreisberg, Jason F.
    Ma, Jianzhu
    Ideker, Trey
    CANCER CELL, 2020, 38 (05) : 672 - +
  • [44] Predicting Gene Mutations in Renal Cell Carcinoma Using Machine Learning
    Staub, D.
    Hannan, R.
    Thomas, K.
    Jiang, S.
    Pedrosa, I.
    Kapur, P.
    Brugarolas, J.
    Wang, J.
    MEDICAL PHYSICS, 2015, 42 (06) : 3586 - 3587
  • [45] DeepDiff: DEEP-learning for predicting DIFFerential gene expression from histone modifications
    Sekhon, Arshdeep
    Singh, Ritambhara
    Qi, Yanjun
    BIOINFORMATICS, 2018, 34 (17) : 891 - 900
  • [46] MetastaSite: Predicting metastasis to different sites using deep learning with gene expression data
    Albaradei, Somayah
    Albaradei, Abdurhman
    Alsaedi, Asim
    Uludag, Mahmut
    Thafar, Maha A.
    Gojobori, Takashi
    Essack, Magbubah
    Gao, Xin
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [47] ConvChrome: Predicting Gene Expression Based on Histone Modifications Using Deep Learning Techniques
    Hamdy, Rania
    Maghraby, Fahima A.
    Omar, Yasser M. K.
    CURRENT BIOINFORMATICS, 2022, 17 (03) : 273 - 283
  • [48] Predicting the effects of cultivation condition on gene regulation in Escherichia coli by using deep learning
    Kwon, Mun Su
    Adidjaja, Joshua Julio
    Kim, Hyun Uk
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 2613 - 2620
  • [49] Sustainable computational mechanics assisted by deep learning
    Oishi, Atsuya
    Yagawa, Genki
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 402
  • [50] A review on deep reinforcement learning for fluid mechanics
    Garnier, Paul
    Viquerat, Jonathan
    Rabault, Jean
    Larcher, Aurelien
    Kuhnle, Alexander
    Hachem, Elie
    COMPUTERS & FLUIDS, 2021, 225 (225)