Predicting Drug Mechanics by Deep Learning on Gene and Cell Activities

被引:0
|
作者
Dutta, Abhishek [1 ]
机构
[1] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT 06269 USA
关键词
D O I
10.1109/EMBC48229.2022.9871391
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The identification of protein target and mechanism of disease are fundamentally important in drug discovery. A pipeline for predicting mechanism of action (MoA) for drug molecules based on gene expression and cell viability data is developed and demonstrated on experimental data. A deep learning network learns the known MoAs over thousands of gene expression and cell viability training data and is shown to predict the unknown MoAs over test data with high efficacy.
引用
收藏
页码:2916 / 2919
页数:4
相关论文
共 50 条
  • [1] Predicting tumor cell line response to drug pairs with deep learning
    Fangfang Xia
    Maulik Shukla
    Thomas Brettin
    Cristina Garcia-Cardona
    Judith Cohn
    Jonathan E. Allen
    Sergei Maslov
    Susan L. Holbeck
    James H. Doroshow
    Yvonne A. Evrard
    Eric A. Stahlberg
    Rick L. Stevens
    BMC Bioinformatics, 19
  • [2] Predicting tumor cell line response to drug pairs with deep learning
    Xia, Fangfang
    Shukla, Maulik
    Brettin, Thomas
    Garcia-Cardona, Cristina
    Cohn, Judith
    Allen, Jonathan E.
    Maslov, Sergei
    Holbeck, Susan L.
    Doroshow, James H.
    Evrard, Yvonne A.
    Stahlberg, Eric A.
    Stevens, Rick L.
    BMC BIOINFORMATICS, 2018, 19
  • [3] Single-Cell Techniques and Deep Learning in Predicting Drug Response
    Wu, Zhenyu
    Lawrence, Patrick J.
    Ma, Anjun
    Zhu, Jian
    Xu, Dong
    Ma, Qin
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2020, 41 (12) : 1050 - 1065
  • [4] XGraphCDS: An explainable deep learning model for predicting drug sensitivity from gene pathways and chemical structures
    Wang, Yimeng
    Yu, Xinxin
    Gu, Yaxin
    Li, Weihua
    Zhu, Keyun
    Chen, Long
    Tang, Yun
    Liu, Guixia
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 168
  • [5] A multimodal deep learning framework for predicting drug-drug interaction events
    Deng, Yifan
    Xu, Xinran
    Qiu, Yang
    Xia, Jingbo
    Zhang, Wen
    Liu, Shichao
    BIOINFORMATICS, 2020, 36 (15) : 4316 - 4322
  • [6] Predicting User Posting Activities in Online Health Communities with Deep Learning
    Wang, Xiangyu
    Zhao, Kang
    Zhou, Xun
    Street, Nick
    ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS, 2020, 11 (03)
  • [7] Predicting Daily Activities From Egocentric Images Using Deep Learning
    Castro, Daniel
    Hickson, Steven
    Bettadapura, Vinay
    Thomaz, Edison
    Abowd, Gregory
    Christensen, Henrik
    Essa, Irfan
    ISWC 2015: PROCEEDINGS OF THE 2015 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, 2015, : 75 - 82
  • [8] Predicting Drug-target Interaction via Wide and Deep Learning
    Du, Yingyi
    Wang, Jihong
    Wang, Xiaodan
    Chen, Jiyun
    Chang, Huiyou
    PROCEEDINGS OF 2018 6TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (ICBCB 2018), 2018, : 128 - 132
  • [9] Predicting adverse drug reactions through interpretable deep learning framework
    Dey, Sanjoy
    Luo, Heng
    Fokoue, Achille
    Hu, Jianying
    Zhang, Ping
    BMC BIOINFORMATICS, 2018, 19
  • [10] DeepSynergy: predicting anti-cancer drug synergy with Deep Learning
    Preuer, Kristina
    Lewis, Richard P. I.
    Hochreiter, Sepp
    Bender, Andreas
    Bulusu, Krishna C.
    Klambauer, Guenter
    BIOINFORMATICS, 2018, 34 (09) : 1538 - 1546