Characterizations of generalized Lie n-higher derivations on certain triangular algebras

被引:0
|
作者
Yuan, He [1 ]
Zhang, Qian [1 ]
Gu, Zhendi [1 ]
机构
[1] Jilin Normal Univ, Coll Math & Comp, Siping 136000, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 11期
关键词
triangular algebra; generalized Lie n -higher derivation; generalized higher derivation;
D O I
10.3934/math.20241446
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper was to provide a characterization of nonlinear generalized Lie nhigher derivations for a certain class of triangular algebras. It was shown that, under some mild conditions, each component Gr of a nonlinear generalized Lie n-higher derivation {G r } rEN of the triangular algebra U could be expressed as the sum of an additive generalized higher derivation and a nonlinear mapping vanishing on all (n - 1)-th commutators on U .
引用
收藏
页码:29916 / 29941
页数:26
相关论文
共 50 条
  • [21] Higher derivations on Lie ideals of triangular algebras
    Han, D.
    SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (06) : 1029 - 1036
  • [22] Characterizations of Lie triple derivations on generalized matrix algebras
    Ashraf, Mohammad
    Akhtar, Mohd Shuaib
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (09) : 3651 - 3660
  • [23] ON n-LIE DERIVATIONS OF TRIANGULAR ALGEBRAS
    Jabeen, Aisha
    OPERATORS AND MATRICES, 2022, 16 (03): : 611 - 622
  • [24] Characterizations of Lie-type derivations of triangular algebras with local actions
    Akhtar, Mohd Shuaib
    Ashraf, Mohammad
    Ansari, Mohammad Afajal
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (02) : 559 - 574
  • [25] Characterizations of Lie-type derivations of triangular algebras with local actions
    Mohd Shuaib Akhtar
    Mohammad Ashraf
    Mohammad Afajal Ansari
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 559 - 574
  • [26] Lie derivations of triangular algebras
    Cheung, WS
    LINEAR & MULTILINEAR ALGEBRA, 2003, 51 (03): : 299 - 310
  • [27] Lie σ-derivations of triangular algebras
    Benkovic, Dominik
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (15): : 2966 - 2983
  • [28] Generalized Lie (Jordan) Triple Derivations on Arbitrary Triangular Algebras
    Ashraf, Mohammad
    Akhtar, Mohd Shuaib
    Ansari, Mohammad Afajal
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 3767 - 3776
  • [29] Generalized Lie (Jordan) Triple Derivations on Arbitrary Triangular Algebras
    Mohammad Ashraf
    Mohd Shuaib Akhtar
    Mohammad Afajal Ansari
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3767 - 3776
  • [30] Lie higher derivations on triangular algebras without assuming unity
    Liang, Xinfeng
    Ren, Dandan
    FILOMAT, 2024, 38 (03) : 919 - 937