Leveraging Symmetry and Addressing Asymmetry Challenges for Improved Convolutional Neural Network-Based Facial Emotion Recognition

被引:0
|
作者
Salagean, Gabriela Laura [1 ]
Leba, Monica [2 ]
Ionica, Andreea Cristina [3 ]
机构
[1] Univ Petrosani, Doctoral Sch, Petrosani 332006, Romania
[2] Univ Petrosani, Syst Control & Comp Engn Dept, Petrosani 332006, Romania
[3] Univ Petrosani, Management & Ind Engn Dept, Petrosani 332006, Romania
来源
SYMMETRY-BASEL | 2025年 / 17卷 / 03期
关键词
convolutional neural networks; deep learning; image preprocessing; real-time emotion analysis; EXPRESSION; CLASSIFICATION;
D O I
10.3390/sym17030397
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study introduces a custom-designed CNN architecture that extracts robust, multi-level facial features and incorporates preprocessing techniques to correct or reduce asymmetry before classification. The innovative characteristics of this research lie in its integrated approach to overcoming facial asymmetry challenges and enhancing CNN-based emotion recognition. This is completed by well-known data augmentation strategies-using methods such as vertical flipping and shuffling-that generate symmetric variations in facial images, effectively balancing the dataset and improving recognition accuracy. Additionally, a Loss Weight parameter is used to fine-tune training, thereby optimizing performance across diverse and unbalanced emotion classes. Collectively, all these contribute to an efficient, real-time facial emotion recognition system that outperforms traditional CNN models and offers practical benefits for various applications while also addressing the inherent challenges of facial asymmetry in emotion detection. Our experimental results demonstrate superior performance compared to other CNN methods, marking a step forward in applications ranging from human-computer interaction to immersive technologies while also acknowledging privacy and ethical considerations.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] An improved graph convolutional neural network for EEG emotion recognition
    Xu, Bingyue
    Zhang, Xin
    Zhang, Xiu
    Sun, Baiwei
    Wang, Yujie
    Neural Computing and Applications, 2024, 36 (36) : 23049 - 23060
  • [22] Modified Convolutional Neural Network Architecture Analysis for Facial Emotion Recognition
    Verma, Abhishek
    Singh, Piyush
    Alex, John Sahaya Rani
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP 2019), 2019, : 169 - 173
  • [23] Emotion recognition based on facial gestures and Convolutional Neural Networks
    Sanchez-Callejas, Francisco Emiliano
    Cruz-Albarran, Irving A.
    Morales-Hernandez, Luis A.
    2024 IEEE 3RD CONFERENCE ON INFORMATION TECHNOLOGY AND DATA SCIENCE, CITDS 2024, 2024, : 193 - 198
  • [24] Deep convolutional neural network-based Leveraging Lion Swarm Optimizer for gesture recognition and classification
    Maashi, Mashael
    Al-Hagery, Mohammed Abdullah
    Rizwanullah, Mohammed
    Osman, Azza Elneil
    AIMS MATHEMATICS, 2024, 9 (04): : 9380 - 9393
  • [25] Bimodal Emotion Recognition Based on Convolutional Neural Network
    Chen, Mengmeng
    Jiang, Lifen
    Ma, Chunmei
    Sun, Huazhi
    ICMLC 2019: 2019 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2019, : 178 - 181
  • [26] Facial Expression Recognition Based on Convolutional Neural Network
    Zhou Yue
    Feng Yanyan
    Zeng Shangyou
    Pan Bing
    PROCEEDINGS OF 2019 IEEE 10TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2019), 2019, : 410 - 413
  • [27] Speech emotion recognition based on improved masking EMD and convolutional recurrent neural network
    Sun, Congshan
    Li, Haifeng
    Ma, Lin
    FRONTIERS IN PSYCHOLOGY, 2023, 13
  • [28] Convolutional Neural Network-Based Automated System for Dog Tracking and Emotion Recognition in Video Surveillance
    Chen, Huan-Yu
    Lin, Chuen-Horng
    Lai, Jyun-Wei
    Chan, Yung-Kuan
    APPLIED SCIENCES-BASEL, 2023, 13 (07):
  • [29] EEG-based emotion recognition via improved evolutionary convolutional neural network
    Guo, Lexiang
    Li, Nan
    Zhang, Tian
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2024, 23 (04) : 203 - 213
  • [30] An optimized facial emotion recognition architecture based on a deep convolutional neural network and genetic algorithm
    Aghabeigi, Fereshteh
    Nazari, Sara
    Eraghi, Nafiseh Osati
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (02) : 1119 - 1129