Physiological and Biochemical Responses of Pseudocereals with C3 and C4 Photosynthetic Metabolism in an Environment with Elevated CO2

被引:0
|
作者
Silva, Bruna Evelyn Paschoal [1 ]
Pires, Stefania Nunes [1 ]
Teixeira, Sheila Bigolin [1 ]
Lucho, Simone Ribeiro [1 ]
Fagundes, Natan da Silva [1 ]
Centeno, Larissa Herter [2 ]
Carlos, Filipe Selau [2 ]
de Souza, Fernanda Reolon [3 ]
de Avila, Luis Antonio [3 ]
Deuner, Sidnei [1 ]
机构
[1] Univ Fed Pelotas, Inst Biol, Dept Bot, BR-96010900 Pelotas, RS, Brazil
[2] Univ Fed Pelotas, Fac Agron Eliseu Maciel, Dept Soils, BR-96010610 Pelotas, RS, Brazil
[3] Mississippi State Univ, Dept Plant & Soil Sci, Mississippi State, MS 39762 USA
来源
PLANTS-BASEL | 2024年 / 13卷 / 23期
关键词
<italic>Amaranthus</italic> spp; <italic>Chenopodium quinoa</italic> (Willd); climate change; photosynthetic parameters; carbohydrate metabolism; LEAF GAS-EXCHANGE; NUTRIENT RESORPTION; WATER RELATIONS; USE EFFICIENCY; FOOD SECURITY; GROWTH; QUINOA; CARBON; C-3; ENRICHMENT;
D O I
10.3390/plants13233453
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The present work aimed to investigate the effect of increasing CO2 concentration on the growth, productivity, grain quality, and biochemical changes in quinoa and amaranth plants. An experiment was conducted in open chambers (OTCs) to evaluate the responses of these species to different levels of CO2 {a[CO2] = 400 +/- 50 mu mol mol-1 CO2 for ambient CO2 concentration, e[CO2] = 700 +/- 50 mu mol mol-1 CO2 for the elevated CO2 concentration}. Growth parameters and photosynthetic pigments reflected changes in gas exchange, saccharolytic enzymes, and carbohydrate metabolism when plants were grown under e[CO2]. Furthermore, both species maintained most of the parameters related to gas exchange, demonstrating that the antioxidant system was efficient in supporting the primary metabolism of plants under e[CO2] conditions. Both species were taller and had longer roots and a greater dry weight of roots and shoots when under e[CO2]. On the other hand, the panicle was shorter under the same situation, indicating that the plants invested energy, nutrients, and all mechanisms in their growth to mitigate stress in expense of yield. This led to a reduction on panicle size and, ultimately, reducing quinoa grain yield. Although e[CO2] altered the plant's metabolic parameters for amaranth, the plants managed to maintain their development without affecting grain yield. Protein levels in grains were reduced in both species under e[CO2] in the average of two harvests. Therefore, for amaranth, the increase in CO2 mainly contributes to lowering the protein content of the grains. As for quinoa, its yield performance is also affected, in addition to its protein content. These findings provide new insights into how plants C3 (amaranth) and C4 (quinoa) respond to e[CO2], significantly increasing photosynthesis and its growth but ultimately reducing yield for quinoa and protein content in both species. This result ultimately underscore the critical need to breed plants that can adapt to e[CO2] as means to mitigate its negative effects and to ensure sustainable and nutritious crop production in future environmental conditions.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Physiological and Growth Responses of C3 and C4 Plants to Reduced Temperature When Grown at Low CO2 of the Last Ice Age
    Joy K.Ward
    David A.Myers
    Richard B.Thomas
    Journal of Integrative Plant Biology, 2008, (11) : 1388 - 1395
  • [22] Physiological and Growth Responses of C3 and C4 Plants to Reduced Temperature When Grown at Low CO2 of the Last Ice Age
    Ward, Joy K.
    Myers, David A.
    Thomas, Richard B.
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2008, 50 (11) : 1388 - 1395
  • [23] Possible Activation of C3 Photosynthesis in C4 Halophyte Kochia prostrata Exposed to an Elevated Concentration of CO2
    Rakhmankulova, Z. F.
    Shuyskaya, E. V.
    Prokofieva, M. Yu.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2021, 68 (06) : 1107 - 1114
  • [24] Effects of elevated CO2 on the tolerance of photosynthesis to acute heat stress in C3, C4, and CAM species
    Wang, Dan
    Heckathorn, Scott A.
    Barua, Deepak
    Joshi, Puneet
    Hamilton, E. William
    Lacroix, Jacob J.
    AMERICAN JOURNAL OF BOTANY, 2008, 95 (02) : 165 - 176
  • [25] Differential improvement in transpiration efficiency of C3 and C4 crop plants under elevated CO2 conditions
    Lakshmi, N. Jyothi
    Vanaja, M.
    Yadav, S. K.
    Maheswari, M.
    Patil, Amol
    Prasad, C. H. Ram
    Satish, P.
    Venkateswarlu, B.
    INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 2014, 84 (03): : 411 - 413
  • [26] Effects of elevated atmospheric CO2 on the nutritional ecology of C3 and C4 grass-feeding caterpillars
    Raymond V. Barbehenn
    David N. Karowe
    Angela Spickard
    Oecologia, 2004, 140 : 86 - 95
  • [27] C3 and C4 photosynthetic performance in cold stress
    Kocar, Maja Matosa
    Sudaric, Aleksandra
    Duvnjak, Tomislav
    Brkic, Andrija
    Vukadinovic, Lovro
    Mazur, Maja
    JOURNAL OF CENTRAL EUROPEAN AGRICULTURE, 2024, 25 (03): : 819 - 832
  • [28] Effects of elevated atmospheric CO2 on the nutritional ecology of C3 and C4 grass-feeding caterpillars
    Barbehenn, RV
    Karowe, DN
    Spickard, A
    OECOLOGIA, 2004, 140 (01) : 86 - 95
  • [29] Growth responses of C4 grasses of contrasting origin to elevated CO2
    Kellogg, EA
    Farnsworth, EJ
    Russo, ET
    Bazzaz, F
    ANNALS OF BOTANY, 1999, 84 (03) : 279 - 288
  • [30] Short-term elevated temperature and CO2 promote photosynthetic induction in the C3 plant Glycine max, but not in the C4 plant Amaranthus tricolor
    Zheng, Tianyu
    Yu, Yuan
    Kang, Huixing
    FUNCTIONAL PLANT BIOLOGY, 2022, 49 (11) : 995 - 1007