A Comparison Analysis of Heart Disease Prediction Using Supervised Machine Learning Techniques

被引:0
|
作者
Elhadjamor, Emna Ammar [1 ]
Harbaoui, Houda [2 ]
机构
[1] Manouba Univ, Lab ENSI, RIADI, Tunis, Tunisia
[2] Univ Sousse, Comp Sci Dept, Sousse, Tunisia
关键词
Machine Learning; Heart Disease Prediction; Clinical Decision-Making Support; Supervised Learning Algorithms; Kaggle Dataset; CLASSIFICATION;
D O I
10.1109/ISCC61673.2024.10733656
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evaluating multiple machine learning models for predicting and detecting heart disease is crucial yet challenging within clinical practice. In regions with limited cardiovascular expertise, misdiagnoses are frequent, highlighting the need for precise early-stage prediction using comprehensive analysis of digital patient records. This study aimed to pinpoint the most accurate machine learning classifiers for this pivotal purpose, leveraging a heart disease dataset sourced from the official 2022 annual CDC survey. Thirteen supervised machine learning algorithms underwent rigorous deployment and evaluation to gauge their effectiveness in predicting heart disease. Comparative assessments scrutinized the performance and accuracy of these algorithms, along with estimating the significance of each feature in predicting heart disease. Exploration extended to various ensemble methods and individual classifiers, including AdaBoost, Random Forest, Extra Trees, HistGradientBoosting, Decision Tree, K-Nearest Neighbors (KNN), Multi-layer Perceptron (MLP), Stochastic Gradient Descent (SGD), Logistic Regression, Gaussian Naive Bayes, among others. Particularly noteworthy was the exceptional performance of HistGradient-Boosting, achieving an outstanding in all evaluation metrics. This outcome underscores the potential of a relatively straightforward supervised machine learning approach, hinting at its promising role in enhancing early-stage prediction and detection of heart disease.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] An Intelligent Heart Disease Prediction Framework Using Machine Learning and Deep Learning Techniques
    Allheeib, Nasser
    Kanwal, Summrina
    Alamri, Sultan
    INTERNATIONAL JOURNAL OF DATA WAREHOUSING AND MINING, 2023, 19 (01)
  • [22] A Clinical support system for Prediction of Heart Disease using Machine Learning Techniques
    El Hamdaoui, Halima
    Boujraf, Said
    Chaoui, Nour El Houda
    Maaroufi, Mustapha
    2020 5TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP'2020), 2020,
  • [23] Dynamic Heart Disease Prediction using Multi-Machine Learning Techniques
    Farzana, Shaik
    Veeraiah, Duggineni
    PROCEEDINGS OF THE 2020 5TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND SECURITY (ICCCS-2020), 2020,
  • [24] Prediction of Heart Disease using Biomedical Data through Machine Learning Techniques
    Lutimath N.M.
    Sharma N.
    Byregowda B.K.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2021, 7 (29)
  • [25] Prediction of Heart Disease Using Machine Learning
    Begum, M. Asma
    Abirami, S.
    Anandhi, R.
    Dhivyadharshini, K.
    Devi, R. Ganga
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (04): : 39 - 42
  • [26] Exploratory Data Analysis of Heart Disease Prediction using Machine Learning Techniques-RS Algorithm
    Vibha, M. B.
    Sneha, S. R.
    Kiran, U.
    Kiran, Y.
    2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, : 209 - 216
  • [27] Agricultural Production Output Prediction Using Supervised Machine Learning Techniques
    Shakoor, Md. Tahmid
    Rahman, Karishma
    Rayta, Sumaiya Nasrin
    Chakrabarty, Amitabha
    2017 1ST INTERNATIONAL CONFERENCE ON NEXT GENERATION COMPUTING APPLICATIONS (NEXTCOMP), 2017, : 182 - 187
  • [28] Prediction of Cardiac Disease using Supervised Machine Learning Algorithms
    Princy, R. Jane Preetha
    Parthasarathy, Saravanan
    Jose, P. Subha Hency
    Lakshminarayanan, Arun Raj
    Jeganathan, Selvaprabu
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 570 - 575
  • [29] Exploring Heart Disease Prediction through Machine Learning Techniques
    Lin, Zhicong
    Chen, Shujing
    Chen, Jichang
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 964 - 969
  • [30] Exploring Machine Learning Techniques for Coronary Heart Disease Prediction
    Khdair, Hisham
    Dasari, Naga M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (05) : 28 - 36