Deform-Mamba Network for MRI Super-Resolution

被引:0
|
作者
Ji, Zexin [1 ,2 ,4 ]
Zou, Beiji [1 ,2 ]
Kui, Xiaoyan [1 ,2 ]
Vera, Pierre [4 ]
Ruan, Su [3 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
[2] Cent South Univ, Hunan Engn Res Ctr Machine Vis & Intelligent Med, Changsha 410083, Peoples R China
[3] Univ Rouen Normandy, LITIS, QuantIF UR 4108, F-76000 Rouen, France
[4] Henri Becquerel Canc Ctr, Dept Nucl Med, Rouen, France
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Magnetic Resonance Imaging; Super-Resolution; Mamba; Deformable; IMAGE; TRANSFORMER; RESOLUTION;
D O I
10.1007/978-3-031-72104-5_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new architecture, called Deform-Mamba, for MR image super-resolution. Unlike conventional CNN or Transformer-based super-resolution approaches which encounter challenges related to the local respective field or heavy computational cost, our approach aims to effectively explore the local and global information of images. Specifically, we develop a Deform-Mamba encoder which is composed of two branches, modulated deform block and vision Mamba block. We also design a multi-view context module in the bottleneck layer to explore the multi-view contextual content. Thanks to the extracted features of the encoder, which include content-adaptive local and efficient global information, the vision Mamba decoder finally generates high-quality MR images. Moreover, we introduce a contrastive edge loss to promote the reconstruction of edge and contrast related content. Quantitative and qualitative experimental results indicate that our approach on IXI and fastMRI datasets achieves competitive performance.
引用
收藏
页码:242 / 252
页数:11
相关论文
共 50 条
  • [31] Attention hierarchical network for super-resolution
    Song, Zhaoyang
    Zhao, Xiaoqiang
    Hui, Yongyong
    Jiang, Hongmei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (30) : 46351 - 46369
  • [32] Perceptual super-resolution in multiple sclerosis MRI
    Giraldo, Diana L.
    Khan, Hamza
    Pineda, Gustavo
    Liang, Zhihua
    Lozano-Castillo, Alfonso
    Van Wijmeersch, Bart
    Woodruff, Henry C.
    Lambin, Philippe
    Romero, Eduardo
    Peeters, Liesbet M.
    Sijbers, Jan
    FRONTIERS IN NEUROSCIENCE, 2024, 18
  • [33] Spatial-Spectral Interaction Super-Resolution CNN-Mamba Network for Fusion of Satellite Hyperspectral and Multispectral Image
    Zhao, Guangwei
    Wu, Haitao
    Luo, Dexiang
    Ou, Xu
    Zhang, Yu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 18489 - 18501
  • [34] Resolution-Aware Network for Image Super-Resolution
    Wang, Yifan
    Wang, Lijun
    Wang, Hongyu
    Li, Peihua
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (05) : 1259 - 1269
  • [35] Single Image Super-Resolution: Depthwise Separable Convolution Super-Resolution Generative Adversarial Network
    Jiang, Zetao
    Huang, Yongsong
    Hu, Lirui
    APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [36] Super-Resolution by Predicting Offsets: An Ultra-Efficient Super-Resolution Network for Rasterized Images
    Gu, Jinjin
    Cai, Haoming
    Dong, Chenyu
    Zhang, Ruofan
    Zhang, Yulun
    Yang, Wenming
    Yuan, Chun
    COMPUTER VISION, ECCV 2022, PT XIX, 2022, 13679 : 583 - 598
  • [37] Autoencoder-Inspired Convolutional Network-Based Super-Resolution Method in MRI
    Park, Seonyeong
    Gach, H. Michael
    Kim, Siyong
    Lee, Suk Jin
    Motai, Yuichi
    IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE, 2021, 9
  • [38] Enhanced generative adversarial network for 3D brain MRI super-resolution
    Wang, Jiancong
    Chen, Yuhua
    Wu, Yifan
    Shi, Jianbo
    Gee, James
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 3616 - 3625
  • [39] MHAN: Multi-Stage Hybrid Attention Network for MRI reconstruction and super-resolution
    Wang, Wanliang
    Shen, Haoxin
    Chen, Jiacheng
    Xing, Fangsen
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 163
  • [40] MGDUN: An interpretable network for multi-contrast MRI image super-resolution reconstruction
    Yang, Gang
    Zhang, Li
    Liu, Aiping
    Fu, Xueyang
    Chen, Xun
    Wang, Rujing
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 167