Quantum Thermodynamics of Nonequilibrium Processes in Lattice Gauge Theories

被引:1
|
作者
Davoudi, Zohreh [1 ,2 ,3 ,4 ,5 ]
Jarzynski, Christopher [1 ,5 ,6 ,7 ]
Mueller, Niklas [8 ]
Oruganti, Greeshma [5 ,7 ]
Powers, Connor [1 ,2 ,3 ,4 ,5 ]
Halpern, Nicole Yunger [3 ,4 ,5 ,7 ]
机构
[1] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[2] Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA
[3] NIST, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[4] Univ Maryland, College Pk, MD 20742 USA
[5] Univ Maryland, NSF Inst Robust Quantum Simulat, College Pk, MD 20742 USA
[6] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA
[7] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[8] Univ Washington, Dept Phys, InQubator Quantum Simulat IQuS, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
THERMALIZATION; TRANSITION; ENTANGLEMENT; DYNAMICS; ORDER;
D O I
10.1103/PhysRevLett.133.250402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early Universe and in particle colliders, starting from the standard model of particle physics. Classical computing methods, via the framework of lattice gauge theory, have experienced limited success in this mission. Quantum simulation of lattice gauge theories holds promise for overcoming computational limitations. Because of local constraints (Gauss's laws), lattice gauge theories have an intricate Hilbertspace structure. This structure complicates the definition of thermodynamic properties of systems coupled to reservoirs during equilibrium and nonequilibrium processes. We show how to define thermodynamic quantities such as work and heat using strong-coupling thermodynamics, a framework that has recently burgeoned within the field of quantum thermodynamics. Our definitions suit instantaneous quenches, simple nonequilibrium processes undertaken in quantum simulators. To illustrate our framework, we compute the work and heat exchanged during a quench in a Z2 lattice gauge theory coupled to matter in 1 & thorn; 1 dimensions. The thermodynamic quantities, as functions of the quench parameter, evidence a phase transition. For general thermal states, we derive a simple relation between a quantum many-body system's entanglement Hamiltonian, measurable with quantum-information-processing tools, and the Hamiltonian of mean force, used to define strong-coupling thermodynamic quantities.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Gauge field theories on a ⊥ lattice
    Burkardt, M
    NEW DIRECTIONS IN QUANTUM CHROMODYNAMICS, 1999, 494 : 239 - 245
  • [32] Robust quantum many-body scars in lattice gauge theories
    Halimeh, Jad C.
    Barbiero, Luca
    Hauke, Philipp
    Grusdt, Fabian
    Bohrdt, Annabelle
    QUANTUM, 2023, 7
  • [33] LATTICE GAUGE-THEORIES
    REBBI, C
    JOURNAL DE PHYSIQUE, 1982, 43 (NC3): : 723 - 741
  • [34] Lattice chiral gauge theories
    Golterman, M
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 94 : 189 - 203
  • [35] Lattice Gauge Theories and String Dynamics in Rydberg Atom Quantum Simulators
    Surace, Federica M.
    Mazza, Paolo P.
    Giudici, Giuliano
    Lerose, Alessio
    Gambassi, Andrea
    Dalmonte, Marcello
    PHYSICAL REVIEW X, 2020, 10 (02)
  • [36] U(1) Wilson lattice gauge theories in digital quantum simulators
    Muschik, Christine
    Heyl, Markus
    Martinez, Esteban
    Monz, Thomas
    Schindler, Philipp
    Vogell, Berit
    Dalmonte, Marcello
    Hauke, Philipp
    Blatt, Rainer
    Zoller, Peter
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [37] Lattice chiral gauge theories in a renormalizable gauge
    Shamir, Y
    NUCLEAR PHYSICS B, 1997, : 664 - 667
  • [38] Gauge invariance and geometric phase in nonequilibrium thermodynamics
    Borlenghi, Simone
    PHYSICAL REVIEW E, 2016, 93 (01)
  • [39] Nonequilibrium thermodynamics of quantum friction
    Reiche, D.
    Intravaia, F.
    Hsiang, J-T
    Busch, K.
    Hu, B. L.
    PHYSICAL REVIEW A, 2020, 102 (05)
  • [40] Quantum gauge theories
    Lagraa, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (04): : 699 - 713