STFNET: Sparse Temporal Fusion for 3D Object Detection in LiDAR Point Cloud

被引:0
|
作者
Meng, Xin [1 ]
Zhou, Yuan [2 ]
Ma, Jun [1 ]
Jiang, Fangdi [1 ]
Qi, Yongze [1 ]
Wang, Cui [3 ]
Kim, Jonghyuk [4 ]
Wang, Shifeng [1 ,3 ]
机构
[1] Changchun Univ Sci & Technol, Sch Optoelect Engn, Changchun 130022, Peoples R China
[2] Leapmotor, Hangzhou 310000, Peoples R China
[3] Changchun Univ Sci & Technol, Zhongshan Inst, Zhongshan 528400, Peoples R China
[4] Naif Arab Univ Secur Sci, Ctr Excellence Cybercrimes & Digital Forens, Riyadh 11452, Saudi Arabia
关键词
Feature extraction; Three-dimensional displays; Point cloud compression; Object detection; Laser radar; History; Sensors; Proposals; Heating systems; Fuses; 3D object detection; autonomous vehicle; LiDAR; point cloud;
D O I
10.1109/JSEN.2024.3519603
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In autonomous driving and robotics, 3D object detection using LiDAR point clouds is a critical task. However, existing single-frame 3D object detection methods face challenges such as noise, occlusions, and sparsity, which degrade detection performance. To address these, we propose the sparse temporal fusion network (STFNet), which leverages multiframe historical information to improve 3D object detection accuracy. The contribution of STFNet contains three core modules: multihistory feature alignment module (MFAM), sparse feature extraction module (SFEM), and temporal fusion transformer (TFformer). MFAM: Ego-motion is used for compensation to align frames, establishing correlations between adjacent frames along the temporal dimension. SFEM: Sparse extraction is performed on features from different time steps to obtain key features within the time series. TFformer: The advanced temporal fusion attention mechanism is introduced to facilitate deep interactions between the current and historical frames. We validated the effectiveness of STFNet on the nuScenes dataset, achieving 71.8% NuScenes detection score (NDS) and 67.0% mean average precision (mAP). Compared to the benchmark method, our method improves 1.6% NDS and 1.5% mAP. Extensive experiments demonstrate that STFNet significantly outperforms most existing methods, highlighting the superiority and generalizability of our approach.
引用
收藏
页码:5866 / 5877
页数:12
相关论文
共 50 条
  • [21] CenterTransFuser: radar point cloud and visual information fusion for 3D object detection
    Li, Yan
    Zeng, Kai
    Shen, Tao
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2023, 2023 (01)
  • [22] 3D Object Detection Method for Autonomous Vehicle Based on Sparse Color Point Cloud
    Luo Y.
    Qin H.
    Qiche Gongcheng/Automotive Engineering, 2021, 43 (04): : 492 - 500
  • [23] 3D Object Detection Based on Extremely Sparse Laser Point Cloud and RGB Images
    Qin Chao
    Wang Yafei
    Zhang Yuchao
    Yin Chengliang
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (18)
  • [24] SparseLIF: High-Performance Sparse LiDAR-Camera Fusion for 3D Object Detection
    Zhang, Hongcheng
    Liang, Liu
    Zeng, Pengxin
    Song, Xiao
    Wang, Zhe
    COMPUTER VISION-ECCV 2024, PT XXXV, 2025, 15093 : 109 - 128
  • [25] PVF-NET: Point & Voxel Fusion 3D Object Detection Framework for Point Cloud
    Cui, Zhihao
    Zhang, Zhenhua
    2020 17TH CONFERENCE ON COMPUTER AND ROBOT VISION (CRV 2020), 2020, : 125 - 133
  • [26] LiDAR-CS Dataset: LiDAR Point Cloud Dataset with Cross-Sensors for 3D Object Detection
    Fang, Jin
    Zhou, Dingfu
    Zhao, Jingjing
    Wu, Chenming
    Tang, Chulin
    Xu, Cheng-Zhong
    Zhang, Liangjun
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024), 2024, : 14822 - 14829
  • [27] LiDAR-Based 3D Temporal Object Detection via Motion-Aware LiDAR Feature Fusion
    Park, Gyuhee
    Koh, Junho
    Kim, Jisong
    Moon, Jun
    Choi, Jun Won
    SENSORS, 2024, 24 (14)
  • [28] 2D&3DHNet for 3D Object Classification in LiDAR Point Cloud
    Song, Wei
    Li, Dechao
    Sun, Su
    Zhang, Lingfeng
    Xin, Yu
    Sung, Yunsick
    Choi, Ryong
    REMOTE SENSING, 2022, 14 (13)
  • [29] Effects of Range-based LiDAR Point Cloud Density Manipulation on 3D Object Detection
    Corral-Soto, Eduardo R.
    Grandhi, Alaap
    He, Yannis Y.
    Rochan, Mrigank
    Liu, Bingbing
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 3166 - 3172
  • [30] Monocular 3D Object Detection Based on Pseudo-LiDAR Point Cloud for Autonomous Vehicles
    Wang, Yijing
    Xu, Sheng
    Zuo, Zhiqiang
    Li, Zheng
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5469 - 5474