Scaling limit of random plane quadrangulations with a simple boundary, via restriction

被引:0
|
作者
Bettinelli, Jeremie [1 ]
Curien, Nicolas [2 ,3 ]
Fredes, Luis [4 ]
Sepulveda, Avelio [5 ]
机构
[1] Inst Polytech Paris, CNRS, Ecole Polytech, LIX, Palaiseau, France
[2] Univ Paris Saclay, Orsay, France
[3] Inst Univ France, Orsay, France
[4] Univ Bordeaux, CNRS, Bordeaux INP, IMB, Talence, France
[5] Univ Chile, Ctr Modelamiento Matemat, UMI CNRS 2807, AFB170001,Beauchef 851, Santiago, Chile
基金
欧洲研究理事会;
关键词
Plane maps; Brownian disk; Quadrangulation; Scaling limit; Simple boundary; CONVERGENCE; MAPS; WALK;
D O I
10.1214/23-AIHP1437
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that quadrangulations with a simple boundary converge to the Brownian disk. More precisely, we fix a sequence / (pn) of even positive integers with pn similar to 2 alpha 2n for some alpha is an element of (0, infinity). Then, for the Gromov-Hausdorff topology, a quadrangulation with a simple boundary uniformly sampled among those with n inner faces and boundary length pn weakly converges, in the usual scaling n-1/4, toward the Brownian disk of perimeter 3 alpha. Our method consists in seeing a uniform quadrangulation with a simple boundary as a conditioned version of a model of maps for which the Gromov-Hausdorff scaling limit is known. We then explain how classical techniques of unconditionning can be used in this setting of random maps.
引用
收藏
页码:213 / 231
页数:19
相关论文
共 50 条
  • [41] Scaling limit of local time of Sinai’s random walk
    Wenming Hong
    Hui Yang
    Ke Zhou
    Frontiers of Mathematics in China, 2015, 10 : 1313 - 1324
  • [42] Scaling limit and ageing for branching random walk in Pareto environment
    Ortgiese, Marcel
    Roberts, Matthew, I
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (03): : 1291 - 1313
  • [43] A scaling limit for the length of the longest cycle in a sparse random digraph
    Anastos, Michael
    Frieze, Alan
    RANDOM STRUCTURES & ALGORITHMS, 2022, 60 (01) : 3 - 24
  • [44] Scaling limit of local time of Sinai's random walk
    Hong, Wenming
    Yang, Hui
    Zhou, Ke
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (06) : 1313 - 1324
  • [45] The continuum random tree is the scaling limit of unlabeled unrooted trees
    Stufler, Benedikt
    RANDOM STRUCTURES & ALGORITHMS, 2019, 55 (02) : 496 - 528
  • [46] Scaling limit of an equilibrium surface under the Random Average Process
    Fontes, Luiz Renato
    Machado, Mariela Penton
    Zuaznabar, Leonel
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [47] A scaling limit for the length of the longest cycle in a sparse random graph
    Anastos, Michael
    Frieze, Alan
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 148 : 184 - 208
  • [48] On Lamperti type limit theorem and scaling transition for random fields
    Damarackas, Julius
    Paulauskas, Vygantas
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 497 (01)
  • [49] On the scaling limit of loop-erased random walk excursion
    Viklund, Fredrik Johansson
    ARKIV FOR MATEMATIK, 2012, 50 (02): : 331 - 357
  • [50] Scaling in a simple model for surface growth in a random medium
    Aharony, A
    Stauffer, D
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2002, 13 (05): : 603 - 612