A Semantically Guided Deep Supervised Hashing Model for Multi-Label Remote Sensing Image Retrieval

被引:0
|
作者
Liu, Bowen [1 ,2 ]
Liu, Shibin [1 ]
Liu, Wei [1 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
关键词
remote sensing image retrieval; deep supervised hash; multi-label; similarity measure; NETWORK;
D O I
10.3390/rs17050838
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the rapid growth of remote sensing data, efficiently managing and retrieving large-scale remote sensing images has become a significant challenge. Specifically, for multi-label image retrieval, single-scale feature extraction methods often fail to capture the rich and complex information inherent in these images. Additionally, the sheer volume of data creates challenges in retrieval efficiency. Furthermore, leveraging semantic information for more accurate retrieval remains an open issue. In this paper, we propose a multi-label remote sensing image retrieval method based on an improved Swin Transformer, called Semantically Guided Deep Supervised Hashing (SGDSH). The method aims to enhance feature extraction capabilities and improve retrieval precision. By utilizing multi-scale information through an end-to-end learning approach with a multi-scale feature fusion module, SGDSH effectively integrates both shallow and deep features. A classification layer is introduced to assist in training the hash codes, incorporating RS image category information to improve retrieval accuracy. The model is optimized for multi-label retrieval through a novel loss function that combines classification loss, pairwise similarity loss, and hash code quantization loss. Experimental results on three publicly available remote sensing datasets, with varying sizes and label distributions, demonstrate that SGDSH outperforms state-of-the-art multi-label hashing methods in terms of average accuracy and weighted average precision. Moreover, SGDSH returns more relevant images with higher label similarity to query images. These findings confirm the effectiveness of SGDSH for large-scale remote sensing image retrieval tasks and provide new insights for future research on multi-label remote sensing image retrieval.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] A Semantic-Preserving Deep Hashing Model for Multi-Label Remote Sensing Image Retrieval
    Cheng, Qimin
    Huang, Haiyan
    Ye, Lan
    Fu, Peng
    Gan, Deqiao
    Zhou, Yuzhuo
    REMOTE SENSING, 2021, 13 (24)
  • [2] Deep Multi-Label Hashing for Image Retrieval
    Zhong, Xian
    Li, Jiachen
    Huang, Wenxin
    Xie, Liang
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1245 - 1251
  • [3] Deep Supervised Hashing for Multi-Label and Large-Scale Image Retrieval
    Wu, Dayan
    Lin, Zheng
    Li, Bo
    Ye, Mingzhen
    Wang, Weiping
    PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL (ICMR'17), 2017, : 155 - 163
  • [4] Deep hashing for multi-label image retrieval: a survey
    Josiane Rodrigues
    Marco Cristo
    Juan G. Colonna
    Artificial Intelligence Review, 2020, 53 : 5261 - 5307
  • [5] Deep hashing for multi-label image retrieval: a survey
    Rodrigues, Josiane
    Cristo, Marco
    Colonna, Juan G.
    ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (07) : 5261 - 5307
  • [6] Deep Co-Image-Label Hashing for Multi-Label Image Retrieval
    Shen, Xiaobo
    Dong, Guohua
    Zheng, Yuhui
    Lan, Long
    Tsang, Ivor
    Sun, Quan-Sen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1116 - 1126
  • [7] Deep Co-Image-Label Hashing for Multi-Label Image Retrieval
    Shen, Xiaobo
    Dong, Guohua
    Zheng, Yuhui
    Lan, Long
    Tsang, Ivor
    Sun, Quan-Sen
    IEEE Transactions on Multimedia, 2022, 24 : 1116 - 1126
  • [8] Deep Hashing With Walsh Domain for Multi-Label Image Retrieval
    Chen, Yinqi
    Li, Peiwen
    Zheng, Yangting
    Luo, Weijian
    Gao, Xiang
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 861 - 865
  • [9] DEEP HASHING MULTI-LABEL IMAGE RETRIEVAL WITH ATTENTION MECHANISM
    Xie, Wu
    Cui, Mengyin
    Liu, Manyi
    Wang, Peilei
    Qiang, Baohua
    INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2022, 37 (04): : 372 - 381
  • [10] Deep Multi-Similarity Hashing for Multi-label Image Retrieval
    Li, Tong
    Gao, Sheng
    Xu, Yajing
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 2159 - 2162