3D bioprinting: Advancing the future of food production layer by layer

被引:0
|
作者
Chandimali, Nisansala [1 ,2 ]
Bak, Seon-Gyeong [1 ]
Park, Eun Hyun [1 ,3 ,4 ]
Cheong, Sun Hee [5 ]
Park, Sang-Ik [1 ,3 ,4 ]
Lee, Seung-Jae [1 ,2 ]
机构
[1] Korea Res Inst Biosci & Biotechnol, Funct Biomat Res Ctr, Jeongeup 56212, South Korea
[2] Univ Sci & Technol UST, Dept Appl Biotechnol, Daejeon 34113, South Korea
[3] Chonnam Natl Univ, Coll Vet Med, Dept Vet Surg, Gwangju 61186, South Korea
[4] Chonnam Natl Univ, BK21 FOUR Program, Gwangju 61186, South Korea
[5] Chonnam Natl Univ, Dept Marine Bio Food Sci, Yeosu 59626, South Korea
基金
新加坡国家研究基金会;
关键词
Bioprinter; Bio ink; Cultured meat; Scaffolds; Tissue engineering; SCAFFOLDS; BIOMATERIALS; HYDROGELS; DESIGN; MEAT;
D O I
10.1016/j.foodchem.2025.142828
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
3D bioprinting is an advanced manufacturing technique that involves the precise layer-by-layer deposition of biomaterials, such as cells, growth factors, and biomimetic scaffolds, to create three-dimensional living structures. It essentially combines the complexity of biology with the principles of 3D printing, making it possible to fabricate complex biological structures with extreme control and accuracy. This review discusses how 3D bioprinting is developing as an essential step in the creation of alternative food such as cultured meat and seafood. In light of the growing global issues associated with food sustainability and the ethical challenges raised by conventional animal agriculture, 3D bioprinting is emerging as a key technology that will transform food production in the years to come. This paper also addresses in detail each of the components that make up bioprinting systems, such as the bioinks and scaffolds used, the various types of bioprinter models, and the software systems that control the production process. It offers a thorough examination of the processes involved in printing diverse food items using bioprinting. Beyond the scope of this conversation, 3D bioprinting, which provides superior precision and scalability in tissue engineering, is a crucial node in the broader system of cultured meat and seafood production. But like any emerging technology, 3D bioprinting has its limitations. In light of this, this study emphasizes the necessity of ongoing research and development to advance bioprinting towards widespread use and, ultimately, promote a more resilient, ethical, and sustainable food supply system.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] 3D Bioprinting for Vascularization
    Mir, Amatullah
    Lee, Eugenia
    Shih, Wesley
    Koljaka, Sarah
    Wang, Anya
    Jorgensen, Caitlin
    Hurr, Riley
    Dave, Amartya
    Sudheendra, Krupa
    Hibino, Narutoshi
    BIOENGINEERING-BASEL, 2023, 10 (05):
  • [32] Graphene in 3D Bioprinting
    Patil, Rahul
    Alimperti, Stella
    JOURNAL OF FUNCTIONAL BIOMATERIALS, 2024, 15 (04)
  • [33] Bioprinting of 3D hydrogels
    Stanton, M. M.
    Samitier, J.
    Sanchez, S.
    LAB ON A CHIP, 2015, 15 (15) : 3111 - 3115
  • [34] New 3D digitizer by cutting and scanning layer-by-layer
    Xi'an Jiaotong Univ, Xi'an, China
    Chin J Lasers B, 2 (183-187):
  • [35] A layer-by-layer quality monitoring framework for 3D printing
    Bisheh, Mohammad Najjartabar
    Chang, Shing, I
    Lei, Shuting
    COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 157
  • [36] A New 3D Digitizer by Cutting and Scanning Layer-by-layer
    ZHOU Jian YANG Yuxiao ZHAO Mingtao TAN Yushan (Research Institute for Laser and Infrared Application
    Chinese Journal of Lasers, 1999, (02) : 88 - 92
  • [37] 3D extrusion bioprinting
    Yu Shrike Zhang
    Ghazaleh Haghiashtiani
    Tania Hübscher
    Daniel J. Kelly
    Jia Min Lee
    Matthias Lutolf
    Michael C. McAlpine
    Wai Yee Yeong
    Marcy Zenobi-Wong
    Jos Malda
    Nature Reviews Methods Primers, 1
  • [38] 3D extrusion bioprinting
    Willson, Joseph
    NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [39] Contemporary standpoint and future of 3D bioprinting in tissue/organs printing
    Reddy, Vundrala Sumedha
    Ramasubramanian, Brindha
    Telrandhe, Vedant Mohan
    Ramakrishna, Seeram
    CURRENT OPINION IN BIOMEDICAL ENGINEERING, 2023, 27
  • [40] Why choose 3D bioprinting? Part Ⅰ:a brief introduction of 3D bioprinting for the beginners
    Yong He
    Mingjun Xie
    Qing Gao
    Jianzhong Fu
    Bio-Design and Manufacturing, 2019, 2 (04) : 221 - 224