Aspect Ratio Controls Hot-Carrier Generation in Gold Nanobricks

被引:0
|
作者
Joao, Simao M. [1 ]
Bassano, Ottavio [1 ]
Lischner, Johannes [1 ,2 ]
机构
[1] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[2] Thomas Young Ctr Theory & Simulat Mat, London E1 4NS, England
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2025年 / 129卷 / 10期
基金
英国工程与自然科学研究理事会;
关键词
OPTICAL-PROPERTIES;
D O I
10.1021/acs.jpcc.4c08595
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Energetic or "hot" electrons and holes generated from the decay of localized surface plasmons in metallic nanoparticles have great potential for applications in photocatalysis, photovoltaics, and sensing. Here, we study the generation of hot carriers in brick-shaped gold nanoparticles using a recently developed modeling approach that combines a solution to Maxwell's equation with large-scale tight-binding simulations to evaluate Fermi's Golden Rule. We find that hot-carrier generation depends sensitively on the aspect ratio of the nanobricks with flatter bricks, producing a large number of energetic electrons irrespective of the light polarization. In contrast, the hot-carrier generation rates of elongated nanobricks exhibit a strong dependence on the light polarization. The insights resulting from our calculations can be harnessed to design nanobricks that produce hot carriers with properties tailored to specific device applications.
引用
收藏
页码:4886 / 4892
页数:7
相关论文
共 50 条
  • [31] Theoretical predictions for hot-carrier generation from surface plasmon decay
    Sundararaman, Ravishankar
    Narang, Prineha
    Jermyn, Adam S.
    Goddard, William A., III
    Atwater, Harry A.
    NATURE COMMUNICATIONS, 2014, 5
  • [32] Theoretical predictions for hot-carrier generation from surface plasmon decay
    Ravishankar Sundararaman
    Prineha Narang
    Adam S. Jermyn
    William A. Goddard III
    Harry A. Atwater
    Nature Communications, 5
  • [33] MECHANISM OF THE GENERATION OF OSCILLATIONS IN A HOT-CARRIER P-N-JUNCTION
    VEINGER, AI
    KOCHARYAN, AA
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1982, 16 (02): : 191 - 195
  • [34] EFFECT OF GATE MATERIALS ON GENERATION OF INTERFACE STATE BY HOT-CARRIER INJECTION
    MATSUHASHI, H
    NISHIKAWA, S
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1993, 32 (1B): : 362 - 367
  • [35] HOT-CARRIER INSB MICROWAVE MODULATION
    TAN, BTG
    ELECTRONICS LETTERS, 1967, 3 (11) : 504 - &
  • [36] HOT-CARRIER DRIFT VELOCITY IN SILICON
    COSTATO, M
    SCAVO, S
    NUOVO CIMENTO B, 1967, 52 (01): : 236 - &
  • [37] On the Temperature Behavior of Hot-Carrier Degradation
    Tyaginov, S.
    Jech, M.
    Sharma, P.
    Franco, J.
    Kaczer, B.
    Grasser, T.
    2015 IEEE INTERNATIONAL INTEGRATED RELIABILITY WORKSHOP (IIRW), 2015, : 143 - 146
  • [38] Demonstration of a hot-carrier photovoltaic cell
    Dimmock, James A. R.
    Day, Stephen
    Kauer, Matthias
    Smith, Katherine
    Heffernan, Jon
    PROGRESS IN PHOTOVOLTAICS, 2014, 22 (02): : 151 - 160
  • [39] Gate-to-drain/source overlap and asymmetry effects on hot-carrier generation
    Devoge, P.
    Aziza, H.
    Lorenzini, P.
    Masson, P.
    Julien, F.
    Marzaki, A.
    Malherbe, A.
    Delalleau, J.
    Cabout, T.
    Regnier, A.
    Niel, S.
    2022 IEEE INTERNATIONAL INTEGRATED RELIABILITY WORKSHOP, IIRW, 2022,
  • [40] MODELING OF OXIDE-CHARGE GENERATION DURING HOT-CARRIER DEGRADATION OF PMOSFETS
    WOLTJER, R
    PAULZEN, GM
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1994, 41 (09) : 1639 - 1645