Quantitative investigation of internal polarization in a proton exchange membrane water electrolyzer stack using distribution of relaxation times

被引:0
|
作者
Zuo, Jian [1 ]
Steiner, Nadia Yousfi [1 ]
Li, Zhongliang [1 ]
Hissel, Daniel [1 ,2 ]
机构
[1] Univ Marie & Louis Pasteur, UTBM, CNRS, FEMTO ST, F-90000 Belfort, France
[2] Inst Univ France IUF, Paris, France
关键词
Proton exchange membrane water electrolyzer; Electrochemical impedance spectroscopy; Distribution of relaxation times; Polarization process; Oxygen evolution reaction; PERFORMANCE; PARAMETERS;
D O I
10.1016/j.apenergy.2025.125543
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Proton exchange membrane water electrolyzer (PEMWE) is a promising technology for hydrogen production due to its ability to operate at high currents, compact design, and high produced hydrogen purity. However, the high cost and limited durability challenges must be addressed to advance the commercialization of PEMWEs. Accessing the internal polarization processes is crucial to understanding the performance of PEMWEs and guiding their design and operation. In practice, the output voltage amplitude on a specific current value is often considered a performance indicator. However, PEMWEs are complex systems with multiple polarization processes that are inaccessible using global indicators such as voltage. We propose a distribution of relaxation times (DRT) based approach to overcome this challenge. DRT is a model-free method that deconvolutes the electrochemical impedance spectroscopy data into a series of relaxation times, corresponding to different internal polarization processes. The results show that the internal polarization processes of the PEMWE can be decomposed into four peaks, corresponding to proton transport in the ionomer of catalyst layer, charge transfer during oxygen evolution reaction and hydrogen evolution reaction, and mass transport. The contribution of these processes and high-frequency resistance (HFR) to the overall overpotential losses are further quantified, which indicates that HFR (79.4%) and charge transfer (16.4%) are the two dominant factors. Finally, the influence of operating temperature and cathode pressure on the performance of the PEMWE is quantified using the proposed approach. This approach can be generalized to identify the degradation root cause of PEMWEs which can guide material enhancement and operation optimization to improve the efficiency and durability of PEMWEs.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A transition metal oxysulfide cathode for the proton exchange membrane water electrolyzer
    Kim, Hyunki
    Kim, Junhyeong
    Kim, Soo-Kil
    Ahn, Sang Hyun
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 232 : 93 - 100
  • [32] The effects of cationic impurities on the performance of proton exchange membrane water electrolyzer
    Li, Na
    Araya, Samuel Simon
    Cui, Xiaoti
    Kaer, Soren Knudsen
    JOURNAL OF POWER SOURCES, 2020, 473
  • [33] Key Components and Design Strategy for a Proton Exchange Membrane Water Electrolyzer
    Chen, Yuhao
    Liu, Chaofan
    Xu, Jingcheng
    Xia, Chengfeng
    Wang, Ping
    Xia, Bao Yu
    Yan, Ya
    Wang, Xianying
    SMALL STRUCTURES, 2023, 4 (06):
  • [34] Effects of gravity on the cell performance of proton exchange membrane water electrolyzer
    Chen, Jingxian
    Sun, Yongwen
    Pan, Xiangmin
    Tao, An
    Jia, Xianlin
    Zhang, Cunman
    Lv, Hong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [35] Investigation on the performance of proton exchange membrane water electrolyzer coupled with a catalyst layer pore network model
    Zeng, Yiding
    Luo, Maji
    Qin, Chaochao
    Liu, Cheng
    Chen, Ben
    ENERGY CONVERSION AND MANAGEMENT-X, 2024, 21
  • [36] Investigation on the performance of Pt surface modified Ti bipolar plates in proton exchange membrane water electrolyzer
    Wang, Xuefei
    Luo, Hong
    Cheng, Hongxu
    Yue, Luo
    Deng, Zhanfeng
    Yao, Jizheng
    Li, Xiaogang
    APPLIED ENERGY, 2024, 357
  • [37] In situ investigation on ultrafast oxygen evolution reactions of water splitting in proton exchange membrane electrolyzer cells
    Mo, Jingke
    Kang, Zhenye
    Yang, Gaoqiang
    Li, Yifan
    Retterer, Scott T.
    Cullen, David A.
    Toops, Todd J.
    Bender, Guido
    Pivovar, Bryan S.
    Green, Johney B., Jr.
    Zhang, Feng-Yuan
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (35) : 18469 - 18475
  • [38] Distribution of Relaxation Times Analysis of Proton Exchange Membrane Fuel Cell Electrochemical Impedance Spectra
    Yuan H.
    Dai H.
    Du R.
    Wei X.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2020, 56 (22): : 120 - 130
  • [39] Self-Discharge of a Proton Exchange Membrane Electrolyzer: Investigation for Modeling Purposes
    Hernandez-Gomez, Angel
    Ramirez, Victor
    Guilbert, Damien
    Saldivar, Belem
    MEMBRANES, 2021, 11 (06)
  • [40] Investigation on performance of proton exchange membrane electrolyzer with different flow field structures
    Lin, Rui
    Lu, Ying
    Xu, Ji
    Huo, Jiawei
    Cai, Xin
    APPLIED ENERGY, 2022, 326