Open ocean convection drives enhanced eastern pathway of the glacial Atlantic Meridional Overturning Circulation

被引:0
|
作者
Gu, Sifan [1 ,2 ,3 ,4 ]
Liu, Zhengyu [5 ,6 ]
Ng, Hong Chin [7 ]
Lynch-Stieglitz, Jean [8 ]
Mcmanus, Jerry F. [9 ]
Spall, Michael [10 ]
Jahn, Alexandra [11 ,12 ]
He, Chengfei [10 ,13 ]
Li, Lingwei [5 ,11 ,12 ]
Yan, Mi [6 ]
Wu, Lixin [14 ]
机构
[1] Shanghai Jiao Tong Univ, Key Lab Polar Ecosyst & Climate Change, Minist Educ, Shanghai 200030, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Oceanog, Shanghai 200030, Peoples R China
[3] Shanghai Jiao Tong Univ, Shanghai Key Lab Polar Life & Environm Sci, Shanghai 200030, Peoples R China
[4] Shanghai Jiao Tong Univ, Shanghai Frontiers Sci Ctr Polar Sci, Shanghai 200030, Peoples R China
[5] Ohio State Univ, Dept Geog, Atmospher Sci Program, Columbus, OH 43210 USA
[6] Nanjing Normal Univ, Sch Geog Sci, Nanjing 210097, Peoples R China
[7] Univ Bristol, Sch Earth Sci, Bristol BS81RJ, England
[8] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
[9] Columbia Univ, Dept Earth & Environm Sci, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
[10] Woods Hole Oceanog Inst, Dept Phys Oceanog, Woods Hole, MA 02543 USA
[11] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA
[12] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA
[13] Univ Miami, Rosenstiel Sch Marine Atmospher & Earth Sci, Miami, FL 33149 USA
[14] Ocean Univ China, Phys Oceanog Lab, Qingdao 266100, Peoples R China
基金
国家重点研发计划;
关键词
Atlantic Meridional Overturning Circulation; Last Glacial Maximum; North Atlantic Deep Water; Pa-231/Th-230; transport pathway; LABRADOR SEA-WATER; NORTH-ATLANTIC; GLOBAL CLIMATOLOGY; INTERIOR PATHWAYS; MODEL; SURFACE; EARTH; MAXIMUM; RECONSTRUCTION; FORAMINIFERA;
D O I
10.1073/pnas.2405051121
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Abundant proxy records suggest a profound reorganization of the Atlantic Meridional Overturning Circulation (AMOC) during the Last Glacial Maximum (LGM, similar to 21,000 y ago), with the North Atlantic Deep Water (NADW) shoaling significantly relative to the present-day (PD) and forming Glacial North Atlantic Intermediate Water (GNAIW). However, almost all previous observational and modeling studies have focused on the zonal mean two-dimensional AMOC feature, while recent progress in the understanding of modern AMOC reveals a more complicated three-dimensional structure, with NADW penetrating from the subpolar North Atlantic to lower latitude through different pathways. Here, combining Pa-231/Th-230 reconstructions and model simulations, we uncover a significant change in the three-dimensional structure of the glacial AMOC. Specifically, the mid-latitude eastern pathway (EP), located east of the Mid-Atlantic Ridge and transporting about half of the PD NADW from the subpolar gyre to the subtropical gyre, experienced substantial intensification during the LGM. A greater portion of the GNAIW was transported in the eastern basin during the LGM compared to NADW at the PD, resulting in opposite Pa-231/Th-230 changes between eastern and western basins during the LGM. Furthermore, in contrast to the wind-steering mechanism of EP at PD, the intensified LGM EP was caused primarily by the rim current forced by the basin-scale open-ocean convection over the subpolar North Atlantic. Our results underscore the importance of accounting for three-dimensional oceanographic changes to achieve more accurate reconstructions of past AMOC.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Sensitivity of Atlantic Meridional Overturning Circulation to the Dynamical Framework in an Ocean General Circulation Model
    Xiaolan LI
    Yongqiang YU
    Hailong LIU
    Pengfei LIN
    JournalofMeteorologicalResearch, 2017, 31 (03) : 490 - 501
  • [42] Sensitivity of Atlantic Meridional Overturning Circulation to the Dynamical Framework in an Ocean General Circulation Model
    Li, Xiaolan
    Yu, Yongqiang
    Liu, Hailong
    Lin, Pengfei
    JOURNAL OF METEOROLOGICAL RESEARCH, 2017, 31 (03) : 490 - 501
  • [43] Sensitivity of Atlantic meridional overturning circulation to the dynamical framework in an ocean general circulation model
    Xiaolan Li
    Yongqiang Yu
    Hailong Liu
    Pengfei Lin
    Journal of Meteorological Research, 2017, 31 : 490 - 501
  • [44] Dynamics of the Atlantic meridional overturning circulation and Southern Ocean in an ocean model of intermediate complexity
    McCreary, Julian P., Jr.
    Furue, Ryo
    Schloesser, Fabian
    Burkhardt, Theodore W.
    Nonaka, Masami
    PROGRESS IN OCEANOGRAPHY, 2016, 143 : 46 - 81
  • [45] The Observed North Atlantic Meridional Overturning Circulation: Its Meridional Coherence and Ocean Bottom Pressure
    Elipot, Shane
    Frajka-Williams, Eleanor
    Hughes, Chris W.
    Willis, Josh K.
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2014, 44 (02) : 517 - 537
  • [46] Sensitivity of the Atlantic meridional overturning circulation and climate to tropical Indian Ocean warming
    Ferster, Brady S.
    Fedorov, Alexey V.
    Mignot, Juliette
    Guilyardi, Eric
    CLIMATE DYNAMICS, 2021, 57 (9-10) : 2433 - 2451
  • [47] Role of Southern Ocean and the ice sheets in weakening the Atlantic Meridional overturning circulation
    Abe-Ouchi A.
    Oka A.
    Ohgaito R.
    Chikamoto M.
    Summaries of JSSI and JSSE Joint Conference on Snow and Ice Research, 2011, 2011 : 124
  • [48] The Leading, Interdecadal Eigenmode of the Atlantic Meridional Overturning Circulation in a Realistic Ocean Model
    Sevellec, Florian
    Fedorov, Alexey V.
    JOURNAL OF CLIMATE, 2013, 26 (07) : 2160 - 2183
  • [49] Sensitivity of the Atlantic meridional overturning circulation and climate to tropical Indian Ocean warming
    Brady S. Ferster
    Alexey V. Fedorov
    Juliette Mignot
    Eric Guilyardi
    Climate Dynamics, 2021, 57 : 2433 - 2451
  • [50] Coupling of the distribution of silicon isotopes to the meridional overturning circulation of the North Atlantic Ocean
    Brzezinski, Mark A.
    Jones, Janice L.
    DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2015, 116 : 79 - 88