A new characterization of second-order stochastic dominance

被引:0
|
作者
Guan, Yuanying [1 ,2 ]
Huang, Muqiao [3 ]
Wang, Ruodu [3 ]
机构
[1] DePaul Univ, Dept Math Sci, Chicago, IL USA
[2] DePaul Univ, Dept Finance & Real Estate, Chicago, IL USA
[3] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Expected Shortfall; Stochastic dominance; Convex order; Dependence; Strassen's theorem; RISK; DEPENDENCE;
D O I
10.1016/j.insmatheco.2024.09.005
中图分类号
F [经济];
学科分类号
02 ;
摘要
We provide a new characterization of second-order stochastic dominance, also known as increasing concave order. The result has an intuitive interpretation that adding a risk with negative expected value in adverse scenarios makes the resulting position generally less desirable for risk-averse agents. A similar characterization is also found for convex order and increasing convex order. The proof techniques for the main result are based on properties of Expected Shortfall, a family of risk measures that is popular in banking and insurance regulation. Applications in risk management and insurance are discussed.
引用
收藏
页码:261 / 267
页数:7
相关论文
共 50 条