Out-of-Distribution Material Property Prediction Using Adversarial Learning

被引:0
|
作者
Li, Qinyang [1 ]
Miklaucic, Nicholas [1 ]
Hu, Jianjun [1 ]
机构
[1] Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29201 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2025年 / 129卷 / 13期
基金
美国国家科学基金会;
关键词
D O I
10.1021/acs.jpcc.4c07481
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The accurate prediction of material properties is crucial in a wide range of scientific and engineering disciplines. Machine learning (ML) has advanced the state of the art in this field, enabling scientists to discover novel materials and design materials with specific desired properties. However, one major challenge that persists in material property prediction is the generalization of models to out-of-distribution (OOD) samples, i.e., samples that differ significantly from those encountered during training. In real-world materials discovery, OOD scenarios often arise when applying ML to predict additional materials within a newly explored region originating from a few experimental samples. In this paper, we explore the application of advancements in OOD learning approaches to enhance the robustness and reliability of material property prediction models. We propose and apply the Crystal Adversarial Learning (CAL) algorithm for OOD materials property prediction, which generates synthetic data during training to guide learning toward those samples with high prediction uncertainty. We further propose an adversarial learning-based targeted approach to make the model adapt to a particular OOD data set, as an alternative to traditional fine-tuning. Our experiments suggest that our CAL algorithm can be effective in ML scenarios with limited samples, which commonly occur in materials science. Our work provides an important step toward improved OOD learning and materials property prediction and highlights areas that require further exploration and refinement.
引用
收藏
页码:6372 / 6385
页数:14
相关论文
共 50 条
  • [21] Out-of-distribution Detection with Boundary Aware Learning
    Pei, Sen
    Zhang, Xin
    Fan, Bin
    Meng, Gaofeng
    COMPUTER VISION, ECCV 2022, PT XXIV, 2022, 13684 : 235 - 251
  • [22] Counterfactual Active Learning for Out-of-Distribution Generalization
    Deng, Xun
    Wang, Wenjie
    Feng, Fuli
    Zhang, Hanwang
    He, Xiangnan
    Liao, Yong
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 11362 - 11377
  • [23] Causal Representation Learning for Out-of-Distribution Recommendation
    Wang, Wenjie
    Lin, Xinyu
    Feng, Fuli
    He, Xiangnan
    Lin, Min
    Chua, Tat-Seng
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 3562 - 3571
  • [24] Out-Of-Distribution Detection In Unsupervised Continual Learning
    He, Jiangpeng
    Zhu, Fengqing
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3849 - 3854
  • [25] Deep Stable Learning for Out-Of-Distribution Generalization
    Zhang, Xingxuan
    Cui, Peng
    Xu, Renzhe
    Zhou, Linjun
    He, Yue
    Shen, Zheyan
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5368 - 5378
  • [26] Out-of-distribution generalization for learning quantum dynamics
    Matthias C. Caro
    Hsin-Yuan Huang
    Nicholas Ezzell
    Joe Gibbs
    Andrew T. Sornborger
    Lukasz Cincio
    Patrick J. Coles
    Zoë Holmes
    Nature Communications, 14
  • [27] Learning Modular Structures That Generalize Out-of-Distribution
    Ashok, Arjun
    Devaguptapu, Chaitanya
    Balasubramanian, Vineeth N.
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 12905 - 12906
  • [28] A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
    Lee, Kimin
    Lee, Kibok
    Lee, Honglak
    Shin, Jinwoo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [29] Out-of-distribution Internet Traffic Prediction Generalization Using Deep Sequence Model
    Saha, Sajal
    Haque, Anwar
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 3830 - 3835
  • [30] RetroOOD: Understanding Out-of-Distribution Generalization in Retrosynthesis Prediction
    Yu, Yemin
    Yuan, Luotian
    Wei, Ying
    Gao, Hanyu
    Wu, Fei
    Wang, Zhihua
    Ye, Xinhai
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 1, 2024, : 374 - 382