The problem of axisymmetric supersonic laminar flow separation over a compression corner has not been considered within the framework of triple-deck theory for several decades, despite significant advances in both theoretical methods and numerical techniques. In this study, we revisit the problem considered by Gittler & Kluwick (J. Fluid Mech., vol. 179, 1987, pp. 469-487), using the numerical method of Ruban (Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, vol. 18, issue 5, 1978, pp. 1253-1265) and Cassel et al. (J. Fluid Mech., vol. 300, 1995, pp. 265-285), termed the Ruban-Cassel method (RCM). The solution shows good agreement with the results of Gittler & Kluwick (J. Fluid Mech., vol. 179, 1987, pp. 469-487) for a scale external radius of 1 and scale angles from 1 to 6. However, for scale angles above 6.8, a wave packet appears. This wave packet is similar to that reported by Cassel et al. (J. Fluid Mech., vol. 300, 1995, pp. 265-285) for two-dimensional supersonic flow. As the external scale radius increases (from 1 to 10), the axisymmetric solution converges towards the two-dimensional solution for equivalent scale angle values. For a scale external radius of 10, the wave packet appears at a scale angle of 3.8, compared with the value of 3.9 by Cassel et al. (J. Fluid Mech., vol. 300, 1995, pp. 265-285). Inspection of the velocity profiles reveals that inflection points, while ubiquitous in shear flow, do not seem to play a relevant role in the appearance of the wave packet for the axisymmetric flow. Axisymmetric effects become more important as the scale external radius decreases below 0.5. A larger scale angle is necessary to produce a flow structure equivalent to that of the two-dimensional case. For scale external radius 0.1, the pressure gradient is substantially diminished and the solution is devoid of a second shear-stress minimum.