Arithmetics of β- expansions in F q (( x-1 ))

被引:0
|
作者
Zouari, S. [1 ]
机构
[1] Fac Sci Sfax, Dept Math, BP 1171, Sfax 3000, Tunisia
关键词
Formal power series; beta-expansion; algebraic integer series; SYSTEMS;
D O I
10.2298/FIL2425961Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this study is to give some arithmetic properties on the set of beta-polynomials in Fq((x(-1))) i.e. the set of series whose beta-expansion has not fractional part, where |beta| > 1 is an algebraic formal power series over the finite field Fq. We will give sufficient conditions over beta to have the quantity L-circle dot is finite, where L-circle dot designates the maximal finite shift after the comma for the product of two beta-polynomials.
引用
收藏
页码:8961 / 8970
页数:10
相关论文
共 50 条
  • [21] PDF/X-1
    Prepress Bulletin, 2000, 89 (05):
  • [22] THE X-1 COMPUTER
    LOOPSTRA, BJ
    COMPUTER JOURNAL, 1959, 2 (01): : 39 - 43
  • [23] Planet X-1
    Shute, Malcolm
    NEW SCIENTIST, 2009, 201 (2699) : 25 - 25
  • [24] REDUCED PHENOTYPIC EFFECT OF PARTIAL TRISOMY-1Q IN A X-1 TRANSLOCATION
    ZUFFARDI, O
    TIEPOLO, L
    SCAPPATICCI, S
    FRANCESCONI, D
    BIANCHI, C
    DINATALE, D
    ANNALES DE GENETIQUE, 1977, 20 (03): : 191 - 194
  • [25] The X-1 concept
    Sharon, Eldad
    Smidt, Ami
    QUINTESSENCE INTERNATIONAL, 2017, 48 (09): : 687 - 688
  • [26] SCO X-1
    MIYAMOTO, S
    MATSUOKA, M
    SPACE SCIENCE REVIEWS, 1977, 20 (06) : 687 - 755
  • [27] f′(x-1)中间变量的求导与积分
    叶军
    冯平
    新疆职工大学学报, 1996, (01) : 53 - 54+56
  • [28] Divisibility by x-1
    Somer, L
    FIBONACCI QUARTERLY, 1998, 36 (04): : 377 - 378
  • [29] 关于丢番图方程(x-1)(x-1)=y
    陈锡庚
    乐茂华
    怀化师专学报, 2001, (05) : 11 - 12
  • [30] INTENSE X-RAY FLARES FROM AQUILA X-1 AND CIRCINUS X-1
    BUFF, J
    JERNIGAN, G
    LAUFER, B
    BRADT, H
    CLARK, GW
    LEWIN, WHG
    MATILSKY, T
    MAYER, W
    PRIMINI, F
    ASTROPHYSICAL JOURNAL, 1977, 212 (03): : 768 - 773