KITE-DDI: A Knowledge Graph Integrated Transformer Model for Accurately Predicting Drug-Drug Interaction Events From Drug SMILES and Biomedical Knowledge Graph

被引:0
|
作者
Tamir, Azwad [1 ]
Yuan, Jiann-Shiun [1 ]
机构
[1] Univ Cent Florida, Dept Elect & Comp Engn, Orlando, FL 32816 USA
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Drugs; Predictive models; Feature extraction; Compounds; Neural networks; Training; Accuracy; Prediction algorithms; Biological system modeling; Computer architecture; Artificial intelligence; attention; BERT; CNN; deep learning; drug discovery; drug-drug interaction; DRKG; fine-tuning; knowledge graph; machine learning; pretraining; self-attention; SMILE; transfer learning; transformers;
D O I
10.1109/ACCESS.2025.3547594
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is a common practice in modern medicine to prescribe multiple medications simultaneously to treat diseases. However, these medications could have adverse reactions between them, known as Drug-Drug Interactions (DDI), which have the potential to cause significant bodily injury and could even be fatal. Hence, it is essential to identify all the DDI events before prescribing multiple drugs to a patient. Most contemporary research for predicting DDI events relies on either information from Biomedical Knowledge graphs (KG) or drug SMILES, with very few managing to merge data from both to make predictions, while others use heuristic algorithms to extract features from SMILES and KGs, which are then fed into a Deep Learning framework to generate output. In this study, we propose a KG-integrated Transformer architecture to generate an end-to-end fully automated Machine Learning pipeline for predicting DDI events with high accuracy. The algorithm takes full-scale molecular SMILES sequences of a pair of drugs and a biomedical KG as input and predicts the interaction between the two drugs with high precision. The results show superior performance in two different benchmark datasets compared to existing state-of-the-art models especially when the test and training sets contain distinct sets of drug molecules. This demonstrates the strong generalization of the proposed model, indicating its potential for DDI event prediction for newly developed drugs. The model does not depend on heuristic models for generating embeddings and has a minimal number of hyperparameters, making it easy to use while demonstrating outstanding performance in low-data scenarios.
引用
收藏
页码:40028 / 40043
页数:16
相关论文
共 50 条
  • [21] Knowledge Graph Neural Network With Spatial-Aware Capsule for Drug-Drug Interaction Prediction
    Su, Xiaorui
    Zhao, Bowei
    Li, Guodong
    Zhang, Jun
    Hu, Pengwei
    You, Zhuhong
    Hu, Lun
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (03) : 1771 - 1781
  • [22] SubGE-DDI: A new prediction model for drug-drug interaction established through biomedical texts and drug-pairs knowledge subgraph enhancement
    Shi, Yiyang
    He, Mingxiu
    Chen, Junheng
    Han, Fangfang
    Cai, Yongming
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (04)
  • [23] Enhancing drug-drug interaction prediction by three-way decision and knowledge graph embedding
    Hao, Xinkun
    Chen, Qingfeng
    Pan, Haiming
    Qiu, Jie
    Zhang, Yuxiao
    Yu, Qian
    Han, Zongzhao
    Du, Xiaojing
    GRANULAR COMPUTING, 2023, 8 (01) : 67 - 76
  • [24] Drug-Drug Interaction Predictions via Knowledge Graph and Text Embedding: Instrument Validation Study
    Wang, Meng
    Wang, Haofen
    Liu, Xing
    Ma, Xinyu
    Wang, Beilun
    JMIR MEDICAL INFORMATICS, 2021, 9 (06)
  • [25] DDI-GCN: Drug-drug interaction prediction via explainable graph convolutional networks
    Zhong, Yi
    Zheng, Houbing
    Chen, Xiaoming
    Zhao, Yu
    Gao, Tingfang
    Dong, Huiqun
    Luo, Heng
    Weng, Zuquan
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2023, 144
  • [26] Extracting Drug-drug Interactions from Biomedical Texts using Knowledge Graph Embeddings and Multi-focal Loss
    Jin, Xin
    Sun, Xia
    Chen, Jiacheng
    Sutcliffe, Richard
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 884 - 893
  • [27] An effective framework for predicting drug-drug interactions based on molecular substructures and knowledge graph neural network
    Chen, Siqi
    Semenov, Ivan
    Zhang, Fengyun
    Yang, Yang
    Geng, Jie
    Feng, Xuequan
    Meng, Qinghua
    Lei, Kaiyou
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 169
  • [28] HF-DDI: Predicting Drug-Drug Interaction Events Based on Multimodal Hybrid Fusion
    Huang, An
    Xie, Xiaolan
    Yao, Xiaojun
    Liu, Huanxiang
    Wang, Xiaoqi
    Peng, Shaoliang
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2023, 30 (09) : 961 - 971
  • [29] Drug-drug interactions prediction based on deep learning and knowledge graph: A review
    Luo, Huimin
    Yin, Weijie
    Wang, Jianlin
    Zhang, Ge
    Liang, Wenjuan
    Luo, Junwei
    Yan, Chaokun
    ISCIENCE, 2024, 27 (03)
  • [30] Deep graph contrastive learning model for drug-drug interaction prediction
    Jiang, Zhenyu
    Gong, Zhi
    Dai, Xiaopeng
    Zhang, Hongyan
    Ding, Pingjian
    Shen, Cong
    PLOS ONE, 2024, 19 (06):