Multivariate Time-Series Anomaly Detection in IoT with a Bi-Dual GM GRU Autoencoder

被引:0
|
作者
Yu, Yuan-Cheng [1 ]
Ouyang, Yen-Chieh [1 ]
Wu, Ling-Wei [1 ]
Lin, Chun-An [1 ]
Tsai, Kuo-Yu [2 ]
机构
[1] Natl Chung Hsing Univ, Taichung, Taiwan
[2] Feng Chia Univ, Taichung, Taiwan
来源
2024 IEEE 48TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC 2024 | 2024年
关键词
Anomaly detection; Multivariate time series; Unsupervised learning; SECURITY; NETWORKS;
D O I
10.1109/COMPSAC61105.2024.00106
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Effective anomaly detection is vital to minimize the economic impacts of security issues that Internet of Things (IoT) and Industrial Internet of Things (IIoT) face more frequently in recent years. Conventional anomaly detection methods have difficulties in finding new and complex anomalies. machine learning (ML) algorithms have proven to be excellent in anomaly detection with the development of ML research. However, labeled data is hard to get in real situations, so we need unsupervised learning methods. We suggest a new unsupervised learning method for detecting anomalies in multivariate time series, named Bi-Dual-GM GRU-AE. It has two Gate Mechanisms to better pick the combination part from different aspects of input features. These features are derived from different hidden sizes of GRU encoders that take both forward and backward time windows as inputs. We evaluated the proposed method on real-world IoT and IIoT datasets and showed that it outperforms the latest methods in the multivariate time series anomaly detection task. The proposed approach shows superior detection performance particularly in scenario where anomalies are relatively rare, offering a better detection solution to the modern challenges in IoT and IIoT security.
引用
收藏
页码:746 / 754
页数:9
相关论文
共 50 条
  • [31] GRU-Based Interpretable Multivariate Time Series Anomaly Detection in Industrial Control System
    Tang, Chaofan
    Xu, Lijuan
    Yang, Bo
    Tang, Yongwei
    Zhao, Dawei
    COMPUTERS & SECURITY, 2023, 127
  • [32] Enhancing multivariate time-series anomaly detection with positional encoding mechanisms in transformers
    Alioghli, Abdul Amir
    Okay, Feyza Yildirim
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [33] Asymptotic Consistent Graph Structure Learning for Multivariate Time-Series Anomaly Detection
    Pang, Huaxin
    Wei, Shikui
    Li, Youru
    Liu, Ting
    Zhang, Huaqi
    Qin, Ying
    Zhao, Yao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 10
  • [34] MPFormer: Multipatch Transformer for Multivariate Time-Series Anomaly Detection With Contrastive Learning
    Ma, Shenhui
    Nie, Jiahao
    Guan, Siwei
    He, Zhiwei
    Gao, Mingyu
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (23): : 38221 - 38237
  • [35] Multivariate Anomaly Detection in Mixed Telemetry time-series Using A Sparse Decomposition
    Pilastre, Barbara
    Tourneret, Jean-Yves
    D'Escrivan, Stephane
    Boussouf, Loic
    2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, : 430 - 434
  • [36] Graph-Attention Diffusion for Enhanced Multivariate Time-Series Anomaly Detection
    Lanko, Vadim
    Makarov, Ilya
    IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY, 2024, 5 : 1353 - 1364
  • [37] Contrastive Time-Series Anomaly Detection
    Kim, Hyungi
    Kim, Siwon
    Min, Seonwoo
    Lee, Byunghan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (10) : 5053 - 5065
  • [38] Time-series forecasting based on fuzzy cognitive maps and GRU-autoencoder
    Liu, Xiaoqian
    Zhang, Yingjun
    Wang, Jingping
    Qin, Jiahu
    Yin, Hui
    Yang, Yanyan
    Huang, Hua
    SOFT COMPUTING, 2023,
  • [39] DDANF: Deep denoising autoencoder normalizing flow for unsupervised multivariate time series anomaly detection
    Zhao, Xigang
    Liu, Peng
    Mahmoudi, Said
    Garg, Sahil
    Kaddoum, Georges
    Hassan, Mohammad Mehedi
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 108 : 436 - 444
  • [40] Probabilistic autoencoder with multi-scale feature extraction for multivariate time series anomaly detection
    Zhang, Guangyao
    Gao, Xin
    Wang, Lei
    Xue, Bing
    Fu, Shiyuan
    Yu, Jiahao
    Huang, Zijian
    Huang, Xu
    APPLIED INTELLIGENCE, 2023, 53 (12) : 15855 - 15872