Hard carbon from a sugar derivative for next-generation sodium-ion batteries

被引:2
|
作者
Eren, Enis Oguzhan [1 ]
Senokos, Evgeny [1 ]
Song, Zihan [1 ,3 ]
Mondal, Brinti [4 ]
Perju, Audrey [4 ]
Horner, Tim [1 ]
Yilmaz, Elif Beguem [1 ]
Scoppola, Ernesto [2 ]
Taberna, Pierre-Louis [4 ]
Simon, Patrice [4 ]
Antonietti, Markus [1 ]
Giusto, Paolo [1 ]
机构
[1] Max Planck Inst Colloids & Interfaces, Dept Colloid Chem, D-14476 Potsdam, Germany
[2] Max Planck Inst Colloids & Interfaces, Dept Biomat, D-14476 Potsdam, Germany
[3] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[4] Univ Paul Sabatier, CIRIMAT, UMR, CNRS 5085, 118 Route Narbonne, F-31062 Toulouse, France
基金
欧洲研究理事会;
关键词
LONG CYCLE LIFE; ELECTRODE MATERIALS; ANODE; NA; SUSTAINABILITY; PERFORMANCE; SPECTRA; STORAGE; DESIGN; HMF;
D O I
10.1039/d4mh01118j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium-ion batteries have emerged as a promising secondary battery system due to the abundance of sodium resources. One of the boosters for accelerating the practical application of sodium-ion batteries is the innovation in anode materials. This study focuses on developing a high-performance hard carbon anode material derived from hydroxymethylfurfural, produced from carbohydrates, using a straightforward thermal condensation method. The process results in a unique pseudo-graphitic material with abundant microporosity. Electrochemical evaluations demonstrate excellent sodium storage performance by maintaining the plateau capacity even at higher current densities. This translates to a promising energy density when coupled with the cathode material. However, we also discuss the influence of electrolyte composition on the performance of the hydroxymethylfurfural-derived hard carbon, emphasizing the critical role of electrolyte optimization for the development of efficient and sustainable carbonaceous anode materials for next-generation sodium-based batteries.
引用
收藏
页码:886 / 898
页数:13
相关论文
共 50 条
  • [31] Ionic-conductive sodium titanate to boost sodium-ion transport kinetics of hard carbon anode in sodium-ion batteries
    Li, Fan
    Gong, Hao
    Zhang, Yanlei
    Liu, Xinyu
    Jiang, Zhenming
    Chen, Lian
    Huang, Jianying
    Zhang, Yanyan
    Jiang, Yinzhu
    Chen, Binmeng
    Tang, Yuxin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 981
  • [32] Coaxial Hard Carbon-coated Carbon Nanotubes as Anodes for Sodium-ion Batteries
    Feng, Shan
    Chen, Jialu
    Niu, Xingyu
    Feng, Xiaomiao
    Zhao, Jin
    CHEMNANOMAT, 2022, 8 (10)
  • [33] Biochars from various biomass types as precursors for hard carbon anodes in sodium-ion batteries
    Rios, Carolina del Mar Saavedra
    Simone, Virginie
    Simonin, Loic
    Martinet, Sebastien
    Dupont, Capucine
    BIOMASS & BIOENERGY, 2018, 117 : 32 - 37
  • [34] Porous Hard Carbon Derived from Walnut Shell as an Anode Material for Sodium-Ion Batteries
    Sensen Zhang
    Ying Li
    Min Li
    JOM, 2018, 70 : 1387 - 1391
  • [35] Electrolyte Engineering of Hard Carbon for Sodium-Ion Batteries: From Mechanism Analysis to Design Strategies
    Cui, Keying
    Hou, Ruilin
    Zhou, Haoshen
    Guo, Shaohua
    ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [36] From food waste to high-capacity hard carbon for rechargeable sodium-ion batteries
    Kalibek, Madina
    Rakhymbay, Lunara
    Zhakiyeva, Zhanar
    Bakenov, Zhumabay
    Myung, Seung-Taek
    Konarov, Aishuak
    CARBON RESOURCES CONVERSION, 2024, 7 (03)
  • [37] Porous Hard Carbon Derived from Walnut Shell as an Anode Material for Sodium-Ion Batteries
    Zhang, Sensen
    Li, Ying
    Li, Min
    JOM, 2018, 70 (08) : 1387 - 1391
  • [38] Unveiling pseudocapacitive behavior of hard carbon anode materials for sodium-ion batteries
    Bobyleva, Zoia V.
    Drozhzhin, Oleg A.
    Dosaev, Kirill A.
    Kamiyama, Azusa
    Ryazantsev, Sergey V.
    Komaba, Shinichi
    Antipov, Evgeny V.
    ELECTROCHIMICA ACTA, 2020, 354 (354)
  • [39] Phenolic Resin Derived Hard Carbon Anode for Sodium-Ion Batteries: A Review
    Dey, Shaikat Chandra
    Worfolk, Brian
    Lower, Lillian
    Sagues, William Joe
    Nimlos, Mark R.
    Kelley, Stephen S.
    Park, Sunkyu
    ACS ENERGY LETTERS, 2024, 9 (06): : 2590 - 2614
  • [40] P-doped Hard Carbon as Anode Material for Sodium-ion Batteries
    Hakim, Charifa
    Asfaw, Habtom Desta
    Dahbi, Mouad
    Brandell, Daniel
    Edstrom, Kristina
    Younesi, Reza
    Saadoune, Ismael
    PROCEEDINGS OF 2019 7TH INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC), 2019, : 754 - 756