Seizure Prediction Based on Hybrid Deep Learning Model Using Scalp Electroencephalogram

被引:0
|
作者
Yan, Kuiting [1 ]
Shang, Junliang [1 ]
Wang, Juan [1 ]
Xu, Jie [1 ]
Yuan, Shasha [1 ]
机构
[1] Qufu Normal Univ, Sch Comp Sci, Rizhao 276826, Peoples R China
基金
中国国家自然科学基金;
关键词
Scalp EEG; Seizure prediction; STFT; DenseNet; BiLSTM; Hybrid model;
D O I
10.1007/978-981-99-4742-3_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Epilepsy is a neurological disorder that affects the brain and causes recurring seizures. Scalp electroencephalography (EEG)-based seizure prediction is essential to improve the daily life of patients. To achieve more accurate and reliable predictions of seizures, this study introduces a hybrid model that merges the Dense Convolutional Network (DenseNet) and Bidirectional LSTM (BiLSTM). The densely connected structure of DenseNet can learn richer feature information in the initial layers, while BiLSTM can consider the correlation of the time series and better capture the dynamic changing features of the signal. The raw EEG data is first converted into a time-frequency matrix by short-time Fourier transform (STFT) and then the STFT converted images are fed into the DenseNet-BiLSTM hybrid model to carry out end-to-end feature extraction and classification. Using Leave-One-Out Cross-Validation (LOOCV), our model achieved an average accuracy of 92.45%, an average sensitivity of 92.66%, an F1-Score of 0.923, an average false prediction rate (FPR) of 0.066 per hour, and an Area Under Curve (AUC) score was 0.936 on the CHB-MIT EEG dataset. Our model exhibits superior performance when compared to state-of-the-art methods, especially lower false prediction rate, which has great potential for clinical application.
引用
收藏
页码:272 / 282
页数:11
相关论文
共 50 条
  • [31] Prediction of android ransomware with deep learning model using hybrid cryptography
    Kalphana, K. R.
    Aanjankumar, S.
    Surya, M.
    Ramadevi, M. S.
    Ramela, K. R.
    Anitha, T.
    Nagaprasad, N.
    Krishnaraj, Ramaswamy
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [32] Location-based Hybrid Deep Learning Model for Purchase Prediction
    Zhu, Bing
    Tang, Weigiang
    Mao, Xiai
    Yang, Wenchuan
    2020 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA 2020), 2020, : 161 - 165
  • [33] Hybrid Deep Learning and Model-Based Needle Shape Prediction
    Lezcano, Dimitri A.
    Zhetpissov, Yernar
    Bernardes, Mariana C.
    Moreira, Pedro
    Tokuda, Junichi
    Kim, Jin Seob
    Iordachita, Iulian I.
    IEEE SENSORS JOURNAL, 2024, 24 (11) : 18359 - 18371
  • [34] A Hybrid Study for Epileptic Seizure Detection Based on Deep Learning using EEG Data
    Buldu, Abdulkadir
    Kaplan, Kaplan
    Kuncan, Melih
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2024, 30 (07)
  • [35] Ensemble Learning Based on Hybrid Deep Learning Model for Heart Disease Early Prediction
    Almulihi, Ahmed
    Saleh, Hager
    Hussien, Ali Mohamed
    Mostafa, Sherif
    El-Sappagh, Shaker
    Alnowaiser, Khaled
    Ali, Abdelmgeid A.
    Refaat Hassan, Moatamad
    DIAGNOSTICS, 2022, 12 (12)
  • [36] Deep Learning based Lightweight Model for Seizure Detection using Spectrogram Images
    Khan, Mohd Maaz
    Khan, Irfan Mabood
    Farooq, Omar
    2022 10TH INTERNATIONAL SYMPOSIUM ON DIGITAL FORENSICS AND SECURITY (ISDFS), 2022,
  • [37] A Deep Transfer Learning Approach for Seizure detection using RGB features of Epileptic Electroencephalogram Signals
    Agrawal, Anupam
    Jana, Gopal Chandra
    Gupta, Prachi
    11TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGY AND SCIENCE (CLOUDCOM 2019), 2019, : 367 - 373
  • [38] Credit-Risk Prediction Model Using Hybrid Deep - Machine-Learning Based Algorithms
    Melese, Tamiru
    Berhane, Tesfahun
    Mohammed, Abdu
    Walelgn, Assaye
    Scientific Programming, 2023, 2023
  • [39] Improving Multiple Sclerosis Disease Prediction Using Hybrid Deep Learning Model
    Ojo, Stephen
    Krichen, Moez
    Alamro, Meznah A.
    Mihoub, Alaeddine
    Sampedro, Gabriel Avelino
    Kniezova, Jaroslava
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 81 (01): : 643 - 661
  • [40] Prediction and classification of IoT sensor faults using hybrid deep learning model
    Seba, Adisu Mulu
    Gemeda, Ketema Adere
    Ramulu, Perumalla Janaki
    DISCOVER APPLIED SCIENCES, 2024, 6 (01)