Zeros distribution and interlacing property for certain polynomial sequences

被引:0
|
作者
Guo, Wan-Ming [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
来源
OPEN MATHEMATICS | 2024年 / 22卷 / 01期
关键词
Hankel determinant; interlacing property; Hurwitz stability; Hermite-Biehler theorem; WHITNEY NUMBERS; LOG-CONVEXITY;
D O I
10.1515/math-2024-0085
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we first prove that the Hankel determinant of order three of the polynomial sequence { P n ( x ) = & sum; k >= 0 P ( n , k ) x k } n >= 0 {\left\{{P}_{n}\left(x)={\sum }_{k\ge 0}P\left(n,k){x}<^>{k}\right\}}_{n\ge 0} is weakly (Hurwitz) stable, where P ( n , k ) P\left(n,k) satisfies the recurrence relation P ( n , k ) = ( a 1 n + a 2 ) P ( n - 1 , k ) + ( b 1 n + b 2 ) P ( n - 1 , k - 1 ) , P\left(n,k)=\left({a}_{1}n+{a}_{2})P\left(n-1,k)+\left({b}_{1}n+{b}_{2})P\left(n-1,k-1), with P ( n , k ) = 0 P\left(n,k)=0 wherever k is not an element of { 0 , 1 , & mldr; , n } . k\notin \left\{0,1,\ldots ,n\right\}. The stability of a polynomial is closely associated with the interlacing property, which is based on the Hermite-Biehler theorem. We also show the interlacing property of the polynomial sequence ( U n ( x ) ) n >= 0 , {\left({U}_{n}\left(x))}_{n\ge 0}, which satisfies the following recurrence relation: U n ( x ) = ( alpha n x + beta n ) U n - 1 ( x ) + ( u n x 2 + v n x ) U n - 1 ' ( x ) {U}_{n}\left(x)=\left({\alpha }_{n}x+{\beta }_{n}){U}_{n-1}\left(x)+\left({u}_{n}{x}<^>{2}+{v}_{n}x){U}_{n-1}<^>{<^>{\prime} }\left(x) based on the Hermite-Biehler theorem. As applications, we obtain the weak (Hurwitz) stability of the Hankel determinant of order three for the row polynomials of the (unsigned) Stirling numbers of the first kind, the Whitney numbers of the first kind, and show the interlacing property of Eulerian polynomials, Bell polynomials, and Dowling polynomials.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] LOCATION OF ZEROS OF A POLYNOMIAL RELATIVE TO CERTAIN DISKS
    RIDDELL, RC
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 205 (APR) : 37 - 45
  • [22] ON POLYNOMIALS WITH INTERLACING ZEROS
    ALVAREZ, M
    SANSIGRE, G
    LECTURE NOTES IN MATHEMATICS, 1985, 1171 : 255 - 258
  • [23] On the zeros of asymptotically external polynomial sequences in the plane
    Saff, E. B.
    Stylianopoulos, N.
    JOURNAL OF APPROXIMATION THEORY, 2015, 191 : 118 - 127
  • [24] Location and double interlacing of zeros of certain combination of the Eisenstein series for Γ+0 (2)
    Choi, Soyoung
    Im, Bo-Hae
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 537 (02)
  • [25] Interlacing of zeros of linear combinations of classical orthogonal polynomials from different sequences
    Driver, Kathy
    Jordaan, Kerstin
    Mbuyi, Norbert
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (10) : 2424 - 2429
  • [26] On the interlacing of the zeros of Poincare series
    Saha, Ekata
    Saradha, N.
    RAMANUJAN JOURNAL, 2020, 53 (02): : 439 - 465
  • [27] A note on the interlacing of zeros and orthogonality
    Driver, Kathy
    JOURNAL OF APPROXIMATION THEORY, 2009, 161 (02) : 508 - 510
  • [28] Cubic formulas for computing the zeros of certain quaternionic polynomial
    Liu, Ming-Sheng
    Tang, Yan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (12) : 4280 - 4294
  • [29] Interlacing of zeros of period polynomials
    Breland, Leanna
    Le, Kevin Huu
    Ni, Jingchen
    O'brien, Laura
    Xue, Hui
    Zhu, Daozhou
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2025, 77 (01) : 255 - 299
  • [30] DISTRIBUTION OF POLYNOMIAL SEQUENCES
    HALBERSTAM, H
    RICHERT, HE
    MATHEMATIKA, 1972, 19 (37) : 25 - +