QoS-Aware Energy-Efficient Multi-UAV Offloading Ratio and Trajectory Control Algorithm in Mobile-Edge Computing

被引:0
|
作者
Yin, Jiajie [1 ,2 ]
Tang, Zhiqing [3 ,4 ]
Lou, Jiong [5 ]
Guo, Jianxiong [2 ,6 ]
Cai, Hui [7 ]
Wu, Xiaoming [8 ,9 ]
Wang, Tian [10 ]
Jia, Weijia [6 ]
机构
[1] Beijing Normal Univ, Fac Arts & Sci, Zhuhai 519087, Peoples R China
[2] Beijing Normal Univ, Inst Artificial Intelligence & Future Networks, Zhuhai 519087, Peoples R China
[3] Beijing Normal Univ, Inst Artificial Intelligence & Future Networks, Zhuhai 519087, Peoples R China
[4] Qilu Univ Technol, Shandong Acad Sci, Key Lab Comp Power Network & Informat Secur, Minist Educ, Jinan 250014, Peoples R China
[5] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200240, Peoples R China
[6] BNU HKBU United Int Coll, Guangdong Key Lab AI & Multimodal Data Proc, Zhuhai 519087, Peoples R China
[7] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing 210023, Peoples R China
[8] Qilu Univ Technol, Shandong Acad Sci, Shandong Comp Sci Ctr, Key Lab Comp Power Networkand Informat Secur,Minis, Jinan 250014, Peoples R China
[9] Shandong Fundamental Res Ctr Comp Sci, Shandong Prov Key Lab Comp Networks, Jinan 250014, Peoples R China
[10] Beijing Normal Univ, Inst Artificial Intelligence & Future Networks, Zhuhai 519087, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 24期
基金
中国国家自然科学基金;
关键词
Trajectory; Quality of service; Autonomous aerial vehicles; Internet of Things; Heuristic algorithms; Mobility models; Energy consumption; Heterogeneous mobility pattern; mobile-edge computing (MEC); multiagent deep reinforcement learning; unmanned aerial vehicle (UAV); RESOURCE-ALLOCATION; DEPLOYMENT;
D O I
10.1109/JIOT.2024.3452111
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multiple unmanned aerial vehicle (UAV)-assisted mobile-edge computing (MEC) leverages UAVs equipped with computational resources as mobile-edge servers, providing flexibility and low-latency connections, especially beneficial in smart cities and the Internet of Things (IoT). Maximizing Quality of Services (QoS) while minimizing energy consumption necessitates developing a suitable offloading ratio and trajectory control algorithm for UAVs. However, existing research on UAV control algorithms overlooks significant challenges like the heterogeneity of user equipments (UEs) and offloading failures. Furthermore, there is a dearth of experimental validation in large-scale UAV-assisted MEC scenarios. To bridge these gaps, we introduce a QoS-aware energy-efficient multi-UAV offloading ratio and trajectory control algorithm (QEMUOT). Specifically, 1) a composite UE mobility model is proposed to enhance system heterogeneous modeling, encompassing models for high-speed, low-speed, and fixed UEs; 2) QEMUOT is devised using multiagent reinforcement learning algorithms to determine offloading ratio and trajectory control decisions. To tackle sparse reward space and offloading failures, we employ expert demonstrations for pretraining and enhance reward mechanisms; and 3) experimental simulations illustrate that our algorithm outperforms baseline algorithms in user QoS with reduced energy consumption and demonstrates superior scalability in scenarios with numerous UAVs and UEs.
引用
收藏
页码:40588 / 40602
页数:15
相关论文
共 50 条
  • [21] Energy Consumption and QoS-Aware Co-Offloading for Vehicular Edge Computing
    Lv, Wenkai
    Yang, Pengfei
    Zheng, Tianyang
    Yi, Bijie
    Ding, Yunqing
    Wang, Quan
    Deng, Minwen
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (06) : 5214 - 5225
  • [22] Asynchronous Mobile-Edge Computation Offloading: Energy-Efficient Resource Management
    You, Changsheng
    Zeng, Yong
    Zhang, Rui
    Huang, Kaibin
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (11) : 7590 - 7605
  • [23] Energy-Efficient Mobile-Edge Computation Offloading for Applications with Shared Data
    He, Xiangyu
    Xing, Hong
    Chen, Yue
    Nallanathan, Arumugam
    2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2018,
  • [24] Utility-Aware UAV Deployment and Task Offloading in Multi-UAV Edge Computing Networks
    Kuang, Zhufang
    Wang, Haobin
    Li, Jie
    Hou, Fen
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 14755 - 14770
  • [25] Energy-efficient and delay-aware multitask offloading for mobile edge computing networks
    Chanyour, Tarik
    El Ghmary, Mohamed
    Hmimz, Youssef
    Malki, Mohammed Oucamah Cherkaoui
    MOLECULES, 2022, 27 (05):
  • [26] On Multi-Task Learning for Energy Efficient Task Offloading in Multi-UAV Assisted Edge Computing
    Poursiami, Hamed
    Jabbari, Bijan
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [27] Energy-efficient and delay-aware multitask offloading for mobile edge computing networks
    Chanyour, Tarik
    El Ghmary, Mohamed
    Hmimz, Youssef
    Malki, Mohammed Oucamah Cherkaoui
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2022, 33 (03)
  • [28] Mobility-aware and energy-efficient offloading for mobile edge computing in cellular networks
    Huang, Linyu
    Yu, Quan
    AD HOC NETWORKS, 2024, 158
  • [29] Hierarchical Energy-Efficient Mobile-Edge Computing in IoT Networks
    Wang, Qun
    Tan, Le Thanh
    Hu, Rose Qingyang
    Qian, Yi
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (12): : 11626 - 11639
  • [30] Adaptive Energy-Efficient QoS-Aware Scheduling Algorithm for TCP/IP Mobile Cloud
    Shojafar, Mohammad
    Cordeschi, Nicola
    Abawajy, Jemal H.
    Baccarelli, Enzo
    2015 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2015,