QoS-Aware Energy-Efficient Multi-UAV Offloading Ratio and Trajectory Control Algorithm in Mobile-Edge Computing

被引:0
|
作者
Yin, Jiajie [1 ,2 ]
Tang, Zhiqing [3 ,4 ]
Lou, Jiong [5 ]
Guo, Jianxiong [2 ,6 ]
Cai, Hui [7 ]
Wu, Xiaoming [8 ,9 ]
Wang, Tian [10 ]
Jia, Weijia [6 ]
机构
[1] Beijing Normal Univ, Fac Arts & Sci, Zhuhai 519087, Peoples R China
[2] Beijing Normal Univ, Inst Artificial Intelligence & Future Networks, Zhuhai 519087, Peoples R China
[3] Beijing Normal Univ, Inst Artificial Intelligence & Future Networks, Zhuhai 519087, Peoples R China
[4] Qilu Univ Technol, Shandong Acad Sci, Key Lab Comp Power Network & Informat Secur, Minist Educ, Jinan 250014, Peoples R China
[5] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200240, Peoples R China
[6] BNU HKBU United Int Coll, Guangdong Key Lab AI & Multimodal Data Proc, Zhuhai 519087, Peoples R China
[7] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing 210023, Peoples R China
[8] Qilu Univ Technol, Shandong Acad Sci, Shandong Comp Sci Ctr, Key Lab Comp Power Networkand Informat Secur,Minis, Jinan 250014, Peoples R China
[9] Shandong Fundamental Res Ctr Comp Sci, Shandong Prov Key Lab Comp Networks, Jinan 250014, Peoples R China
[10] Beijing Normal Univ, Inst Artificial Intelligence & Future Networks, Zhuhai 519087, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 24期
基金
中国国家自然科学基金;
关键词
Trajectory; Quality of service; Autonomous aerial vehicles; Internet of Things; Heuristic algorithms; Mobility models; Energy consumption; Heterogeneous mobility pattern; mobile-edge computing (MEC); multiagent deep reinforcement learning; unmanned aerial vehicle (UAV); RESOURCE-ALLOCATION; DEPLOYMENT;
D O I
10.1109/JIOT.2024.3452111
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multiple unmanned aerial vehicle (UAV)-assisted mobile-edge computing (MEC) leverages UAVs equipped with computational resources as mobile-edge servers, providing flexibility and low-latency connections, especially beneficial in smart cities and the Internet of Things (IoT). Maximizing Quality of Services (QoS) while minimizing energy consumption necessitates developing a suitable offloading ratio and trajectory control algorithm for UAVs. However, existing research on UAV control algorithms overlooks significant challenges like the heterogeneity of user equipments (UEs) and offloading failures. Furthermore, there is a dearth of experimental validation in large-scale UAV-assisted MEC scenarios. To bridge these gaps, we introduce a QoS-aware energy-efficient multi-UAV offloading ratio and trajectory control algorithm (QEMUOT). Specifically, 1) a composite UE mobility model is proposed to enhance system heterogeneous modeling, encompassing models for high-speed, low-speed, and fixed UEs; 2) QEMUOT is devised using multiagent reinforcement learning algorithms to determine offloading ratio and trajectory control decisions. To tackle sparse reward space and offloading failures, we employ expert demonstrations for pretraining and enhance reward mechanisms; and 3) experimental simulations illustrate that our algorithm outperforms baseline algorithms in user QoS with reduced energy consumption and demonstrates superior scalability in scenarios with numerous UAVs and UEs.
引用
收藏
页码:40588 / 40602
页数:15
相关论文
共 50 条
  • [1] Multiagent Reinforcement Learning in Controlling Offloading Ratio and Trajectory for Multi-UAV Mobile-Edge Computing
    Lee, Wonseok
    Kim, Taejoon
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (02) : 3417 - 3429
  • [2] Computation-Efficient Offloading and Trajectory Scheduling for Multi-UAV Assisted Mobile Edge Computing
    Zhang, Jiao
    Zhou, Li
    Zhou, Fuhui
    Seet, Boon-Chong
    Zhang, Haijun
    Cai, Zhiping
    Wei, Jibo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (02) : 2114 - 2125
  • [3] Deep Reinforcement Learning for Energy-Efficient Computation Offloading in Mobile-Edge Computing
    Zhou, Huan
    Jiang, Kai
    Liu, Xuxun
    Li, Xiuhua
    Leung, Victor C. M.
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (02): : 1517 - 1530
  • [4] Energy-efficient Computing Offloading Algorithm for Mobile Edge Computing Network
    Zhang X.-J.
    Wu W.-G.
    Zhang C.
    Chai Y.-X.
    Yang S.-Y.
    Wang X.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (02): : 849 - 867
  • [5] Energy-Efficient UAV Deployment and Task Scheduling in Multi-UAV Edge Computing
    Wang, Yangang
    Wang, Hai
    Wei, Xianglin
    2020 12TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2020, : 1147 - 1152
  • [6] Energy-efficient task offloading and trajectory planning in UAV-enabled mobile edge computing networks
    Li, Bin
    Liu, Wenshuai
    Xie, Wancheng
    Li, Xiaohui
    COMPUTER NETWORKS, 2023, 234
  • [7] Delay-Aware and Energy-Efficient Computation Offloading in Mobile-Edge Computing Using Deep Reinforcement Learning
    Ale, Laha
    Zhang, Ning
    Fang, Xiaojie
    Chen, Xianfu
    Wu, Shaohua
    Li, Longzhuang
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (03) : 881 - 892
  • [8] DECO: A Deadline-Aware and Energy-Efficient Algorithm for Task Offloading in Mobile Edge Computing
    Azizi, Sadoon
    Othman, Majeed
    Khamfroush, Hana
    IEEE SYSTEMS JOURNAL, 2023, 17 (01): : 952 - 963
  • [9] Energy-Efficient Resource Allocation for Mobile-Edge Computation Offloading
    You, Changsheng
    Huang, Kaibin
    Chae, Hyukjin
    Kim, Byoung-Hoon
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2017, 16 (03) : 1397 - 1411
  • [10] Fairness-Aware Offloading and Trajectory Optimization for Multi-UAV Enabled Multi-Access Edge Computing
    Diao, Xianbang
    Wang, Meng
    Zheng, Jianchao
    Cai, Yueming
    IEEE ACCESS, 2020, 8 : 124359 - 124370