Second-Order Regularity for Degenerate Parabolic Quasi-Linear Equations in the Heisenberg Group

被引:0
|
作者
Yu, Chengwei [1 ,2 ]
Wang, Huiying [1 ]
Cui, Kunpeng [1 ]
Zhao, Zijing [1 ]
机构
[1] China Fire & Rescue Inst, Dept Basic, 4 Nanyan Rd, Beijing 102202, Peoples R China
[2] Beihang Univ, China Fire & Rescue Inst, Haidian Dist, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
parabolic quasi-linear equation; second-order regularity; Heisenberg group; parabolic p-Laplacian equation; HWloc2,2-regularity; P-LAPLACIAN; C-1; C-ALPHA-REGULARITY;
D O I
10.3390/math12223494
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the Heisenberg group H-n, we obtain the local second-order HWloc2,2 -regularity for the weak solution u to a class of degenerate parabolic quasi-linear equations partial derivative(t)u = Sigma(2n)(i=1) X(i)A(i)(Xu) modeled on the parabolic p-Laplacian equation. Specifically, when 2 <= p <= 4, we demonstrate the integrability of (partial derivative(t)u)(2), namely, partial derivative(t)u is an element of L-loc(2); when 2 <= p < 3, we demonstrate the HWloc2,2 -regularity of u, namely, XXu is an element of L-loc(2). For the HWloc2,2-regularity, when p >= 2, the range of p is optimal compared to the Euclidean case.
引用
收藏
页数:12
相关论文
共 50 条