Predicting Cholesterol Screening Behavior After Age 50 Using Machine Learning: Insights from the Health and Retirement Study

被引:0
|
作者
Kuo, Wan-Chin
Chen, Jingyu
McDonald, Anthony
Chang, Jui-Hung
Johnson, Heather
机构
关键词
D O I
10.1161/circ.150.suppl_1.4139194
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
4139194
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Comparison of logistic regression and machine learning methods for predicting depression risks among disabled elderly individuals: results from the China Health and Retirement Longitudinal Study
    Hong, Shanshan
    Lu, Bingqian
    Wang, Shaobing
    Jiang, Yan
    BMC PSYCHIATRY, 2025, 25 (01)
  • [22] Neighborhood physical disorder, social cohesion, and insomnia: results from participants over age 50 in the Health and Retirement Study
    Chen-Edinboro, Lenis P.
    Kaufmann, Christopher N.
    Augustinavicius, Jura L.
    Mojtabai, Ramin
    Parisi, Jeanine M.
    Wennberg, Alexandra M. V.
    Smith, Michael T.
    Spira, Adam P.
    INTERNATIONAL PSYCHOGERIATRICS, 2015, 27 (02) : 289 - 296
  • [23] The Disability Screening Process and the Labor Market Behavior of Accepted and Rejected Applicants: Evidence from the Health and Retirement Study
    Giertz, Seth H.
    Kubik, Jeffrey D.
    JOURNAL OF LABOR RESEARCH, 2011, 32 (03) : 237 - 253
  • [24] Predicting child mortality determinants in Uttar Pradesh using Machine Learning: Insights from the National Family and Health Survey (2019-21)
    Pandey, Pinky
    Shukla, Sacheendra
    Singh, Niraj Kumar
    Kumar, Mukesh
    CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH, 2025, 32
  • [25] Predicting COVID-19 mortality using statistical, machine learning and fuzzy classification methods: insights from a Portuguese cohort study
    Castro, Cecilia
    Leiva, Victor
    Cunha, Pedro
    Akbar, Muhammad Azeem
    SIGNA VITAE, 2024, 20 (12) : 10 - 27
  • [26] Predicting the Zinc Content in Rice from Farmland Using Machine Learning Models: Insights from Universal Geochemical Parameters
    Geng, Wenda
    Li, Tingting
    Zhu, Xin
    Dou, Lei
    Liu, Zijia
    Qian, Kun
    Ye, Guiqi
    Lin, Kun
    Li, Bo
    Ma, Xudong
    Hou, Qingye
    Yu, Tao
    Yang, Zhongfang
    APPLIED SCIENCES-BASEL, 2025, 15 (03):
  • [27] Forecasting Pediatric Trauma Volumes: Insights From a Retrospective Study Using Machine Learning
    Tsutsumi, Ayaka
    Camerota, Chiara
    Esposito, Flavio
    Park, Si-Min
    Taylor, Tiffany
    Miyata, Shin
    JOURNAL OF SURGICAL RESEARCH, 2025, 306 : 33 - 42
  • [28] Predicting body weight in growing pigs from feeding behavior data using machine learning algorithms
    He, Yuqing
    Tiezzi, Francesco
    Howard, Jeremy
    Maltecca, Christian
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 184
  • [29] Predicting self-perceived general health status using machine learning: an external exposome study
    Jurriaan Hoekstra
    Esther S. Lenssen
    Albert Wong
    Bette Loef
    Gerrie-Cor M. Herber
    Hendriek C. Boshuizen
    Maciek Strak
    W. M. Monique Verschuren
    Nicole A. H. Janssen
    BMC Public Health, 23
  • [30] Predicting self-perceived general health status using machine learning: an external exposome study
    Hoekstra, Jurriaan
    Lenssen, Esther S.
    Wong, Albert
    Loef, Bette
    Herber, Gerrie-Cor M.
    Boshuizen, Hendriek C.
    Strak, Maciek
    Verschuren, W. M. Monique
    Janssen, Nicole A. H.
    BMC PUBLIC HEALTH, 2023, 23 (01)